无码精品人妻一区二区三区影院_国产乱子经典视频在线观看_亚洲国产精品sss在线观看av_国产国语在线播放视频

帶肋鋼腐蝕及其防腐蝕技術研究進展

2021-09-06 06:15:09 hualin

摘(zhai)要

分析討論(lun)了帶(dai)(dai)肋(lei)(lei)鋼在不同工況(kuang)下的銹蝕(shi)機理(li)及影(ying)響(xiang)因素(su),分別(bie)從風(feng)沙沖蝕(shi)、雨水沖刷、大氣、淡(dan)水、海洋(yang)及核(he)輻射6個方(fang)(fang)面闡(chan)述了帶(dai)(dai)肋(lei)(lei)鋼服役過程腐(fu)蝕(shi)現(xian)象。結合(he)當前(qian)社(she)會市場需求與已有防(fang)(fang)護技(ji)術(shu),指出了帶(dai)(dai)肋(lei)(lei)鋼防(fang)(fang)護技(ji)術(shu)的主要發展方(fang)(fang)向。


關鍵詞: 帶肋鋼(gang) ; 工(gong)況 ; 腐蝕(shi)


熱(re)軋帶肋(lei)(lei)鋼(gang)俗稱(cheng)螺紋鋼(gang),是以低合金鋼(gang)為原料,通過加(jia)(jia)熱(re)軋制而(er)成(cheng)的建(jian)筑(zhu)“骨架(jia)”材料;冷軋帶肋(lei)(lei)鋼(gang)則(ze)是在熱(re)軋帶肋(lei)(lei)鋼(gang)基礎上進行冷加(jia)(jia)工(gong)消除應力,如冷拉、拉拔等(deng)獲得工(gong)程用(yong)帶肋(lei)(lei)鋼(gang)。帶肋(lei)(lei)鋼(gang)產(chan)品目前(qian)廣泛應用(yong)于工(gong)業(ye)及民(min)用(yong)建(jian)筑(zhu)、道路、橋梁等(deng)重(zhong)大建(jian)筑(zhu)工(gong)程[1-3]。


材(cai)(cai)(cai)料(liao)(liao)腐(fu)蝕是(shi)材(cai)(cai)(cai)料(liao)(liao)基體與周圍介質 (水(shui)、酸、空氣等) 反應致使材(cai)(cai)(cai)料(liao)(liao)產(chan)(chan)(chan)生損耗(hao)與破壞的(de)過程。Hou等[4]研究指(zhi)出,2014年我國由于腐(fu)蝕產(chan)(chan)(chan)生的(de)損失占全(quan)年國民(min)生產(chan)(chan)(chan)總值的(de)3.34%,材(cai)(cai)(cai)料(liao)(liao)腐(fu)蝕問(wen)題已經嚴重影響(xiang)(xiang)了社會(hui)發展。帶(dai)肋鋼(gang)(gang)作為(wei)建筑等常用材(cai)(cai)(cai)料(liao)(liao),受地理環境、氣候、服役(yi)工(gong)況等多因(yin)素影響(xiang)(xiang)而(er)產(chan)(chan)(chan)生的(de)腐(fu)蝕問(wen)題,直接影響(xiang)(xiang)國家及(ji)人(ren)民(min)財(cai)產(chan)(chan)(chan)安全(quan),其腐(fu)蝕現象一(yi)般發生在(zai)(zai)生產(chan)(chan)(chan)、運(yun)輸、儲運(yun)及(ji)服役(yi)等中(zhong)間環節(jie),具體體現于露(lu)天存放、保管不當及(ji)短期內材(cai)(cai)(cai)料(liao)(liao)表(biao)面(mian)產(chan)(chan)(chan)生影響(xiang)(xiang)材(cai)(cai)(cai)料(liao)(liao)外觀和表(biao)面(mian)性能(neng)的(de)表(biao)面(mian)銹蝕現象,以及(ji)在(zai)(zai)服役(yi)條件或環境中(zhong)產(chan)(chan)(chan)生的(de)腐(fu)蝕行為(wei)。因(yin)而(er)研究帶(dai)肋鋼(gang)(gang)腐(fu)蝕機理及(ji)防(fang)腐(fu)措施等已迫在(zai)(zai)眉睫。


鋼(gang)(gang)筋(jin)混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)結(jie)(jie)構(gou)(gou)是帶肋(lei)鋼(gang)(gang)主要服役環境。腐(fu)蝕(shi)(shi)(shi)介質在鋼(gang)(gang)筋(jin)混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)結(jie)(jie)構(gou)(gou)中(zhong)引起鋼(gang)(gang)筋(jin)腐(fu)蝕(shi)(shi)(shi)的(de)(de)過程可以分為(wei)腐(fu)蝕(shi)(shi)(shi)誘導因子擴散進入混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)結(jie)(jie)構(gou)(gou)中(zhong)引起鋼(gang)(gang)筋(jin)腐(fu)蝕(shi)(shi)(shi)、混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)因鋼(gang)(gang)筋(jin)腐(fu)蝕(shi)(shi)(shi)產物(wu)的(de)(de)產生出(chu)現(xian)(xian)(xian)裂(lie)紋(wen)和裂(lie)紋(wen)擴展致(zhi)使鋼(gang)(gang)筋(jin)與混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)脫離,鋼(gang)(gang)筋(jin)外(wai)保(bao)護層剝落3個階段[5-7]。鋼(gang)(gang)筋(jin)混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)結(jie)(jie)構(gou)(gou)在腐(fu)蝕(shi)(shi)(shi)初(chu)期(qi)因鋼(gang)(gang)筋(jin)腐(fu)蝕(shi)(shi)(shi)產物(wu)的(de)(de)出(chu)現(xian)(xian)(xian),整體結(jie)(jie)構(gou)(gou)粘(zhan)結(jie)(jie)度(du)(du)將更加密(mi)實,內部構(gou)(gou)件承載力(li)會出(chu)現(xian)(xian)(xian)短暫升高的(de)(de)現(xian)(xian)(xian)象;后(hou)期(qi)隨(sui)著(zhu)腐(fu)蝕(shi)(shi)(shi)程度(du)(du)的(de)(de)加劇,不斷(duan)增多(duo)的(de)(de)腐(fu)蝕(shi)(shi)(shi)產物(wu)使得鋼(gang)(gang)筋(jin)與混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)之間的(de)(de)膨脹(zhang)應力(li)加劇,當膨脹(zhang)應力(li)值(zhi)高于鋼(gang)(gang)筋(jin)混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)結(jie)(jie)構(gou)(gou)抗拉強度(du)(du)時混(hun)(hun)凝(ning)(ning)土(tu)(tu)(tu)出(chu)現(xian)(xian)(xian)裂(lie)紋(wen)及脫落現(xian)(xian)(xian)象[8,9]。


帶肋鋼腐(fu)(fu)(fu)蝕(shi)(shi)作用機理主(zhu)要(yao)有化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)、電(dian)化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)、微生(sheng)(sheng)物腐(fu)(fu)(fu)蝕(shi)(shi)及應力腐(fu)(fu)(fu)蝕(shi)(shi)開裂(lie)等(deng)形式,主(zhu)要(yao)以化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)與電(dian)化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)為主(zhu)。化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)即基體材料直接(jie)與周圍腐(fu)(fu)(fu)蝕(shi)(shi)介質發(fa)(fa)生(sheng)(sheng)反應,加速表面氧化(hua),產生(sheng)(sheng)疏(shu)松多孔(kong)的氧化(hua)鐵復(fu)合(he)物。電(dian)化(hua)學(xue)腐(fu)(fu)(fu)蝕(shi)(shi)多發(fa)(fa)生(sheng)(sheng)于潮濕環境中(zhong),材料基體內部鐵素體、滲碳體及游離石墨等(deng)因組份差(cha)異形成電(dian)解池,發(fa)(fa)生(sheng)(sheng)電(dian)化(hua)學(xue)反應[10]。


帶肋鋼腐蝕是一(yi)個相(xiang)對(dui)緩慢的過程,受工況(kuang)環(huan)境 (風(feng)沙沖蝕、雨(yu)水沖刷、大氣、淡水、海洋及核輻射(she)等環(huan)境中(zhong)砂礫刻蝕、酸、堿(jian)、鹽(yan)、雜質(zhi)介質(zhi)構成的電化學腐蝕)、氣候及材料(liao)成分等因素(su)的影(ying)響,在(zai)服役、運輸及儲存過程中(zhong)的腐蝕現象不可避免。


本文主(zhu)要綜述(shu)帶(dai)肋(lei)鋼在(zai)不同工況(kuang)下(xia)的銹蝕機理及影響(xiang)因(yin)素,分別從風(feng)沙沖蝕、雨水(shui)沖刷(shua)、大(da)氣(qi)、淡水(shui)、海洋及核輻射幾方(fang)面闡述(shu)了(le)露天大(da)氣(qi)環(huan)境銹蝕與服役環(huan)境腐蝕的國內外最新研(yan)究進(jin)展。結合當(dang)前已(yi)有的涂層(ceng)技(ji)術(shu)、電化(hua)學處理技(ji)術(shu)、緩蝕劑等防護技(ji)術(shu),以期探索了(le)解(jie)滿足當(dang)前苛刻工況(kuang)下(xia)帶(dai)肋(lei)鋼新型防腐技(ji)術(shu)研(yan)究方(fang)向,為提高(gao)帶(dai)肋(lei)鋼存放、服役時(shi)限與優化(hua)生(sheng)產工藝提供參考。


1 露天環(huan)境的帶肋鋼表(biao)面銹蝕現象與機理


1.1 風(feng)沙沖蝕環境(jing)中的損(sun)傷現(xian)象與機理


中國北(bei)方地區(qu)是沙(sha)塵(chen)暴(bao)高暴(bao)發(fa)活動區(qu)域(yu)[11,12],沙(sha)漠及周邊(bian)的橋梁、輸(shu)電塔和通信塔等鋼筋混凝(ning)土結構因風沙(sha)沖蝕(shi)作用(yong)受到嚴(yan)重(zhong)影(ying)響(xiang)。風沙(sha)沖蝕(shi)過程主要是沙(sha)礫對材料的沖蝕(shi)磨損[13-15]。


沖(chong)(chong)(chong)蝕(shi)(shi)磨損是固體(ti)(ti)表面受(shou)流(liu)(liu)體(ti)(ti)或帶有固體(ti)(ti)粒子(zi)的流(liu)(liu)體(ti)(ti)沖(chong)(chong)(chong)擊材(cai)料(liao)(liao)表面發(fa)生損耗的現象[16,17]。沖(chong)(chong)(chong)蝕(shi)(shi)磨損受(shou)沖(chong)(chong)(chong)蝕(shi)(shi)環境、流(liu)(liu)體(ti)(ti)條件和材(cai)料(liao)(liao)性(xing)質等(deng)多種因(yin)素影響,具體(ti)(ti)體(ti)(ti)現于沖(chong)(chong)(chong)蝕(shi)(shi)角度(du)(du)、沖(chong)(chong)(chong)蝕(shi)(shi)速率、粒子(zi)流(liu)(liu)量(liang)與(yu)粒子(zi)形狀等(deng)因(yin)素[18-20]。塑性(xing)材(cai)料(liao)(liao)與(yu)脆性(xing)材(cai)料(liao)(liao)的最(zui)大沖(chong)(chong)(chong)蝕(shi)(shi)角范圍不同,分別是15°~30°與(yu)90°,一般材(cai)料(liao)(liao)的最(zui)大沖(chong)(chong)(chong)蝕(shi)(shi)角介于這兩者之(zhi)間。Finnie[21]根據(ju)沖(chong)(chong)(chong)蝕(shi)(shi)微(wei)切削理論指出了粒子(zi)低角度(du)(du)沖(chong)(chong)(chong)蝕(shi)(shi)損傷(shang)程(cheng)度(du)(du)評價公式:

微信截圖_202.jpg

式中:V為材料流(liu)失的體積;M為固體粒子質量;v為沖蝕(shi)速度;α為沖蝕(shi)角度;P為彈(dan)性流(liu)體壓力;c為粒子分數。


在(zai)低(di)沖(chong)(chong)(chong)蝕(shi)角度時(shi),具有動能(neng)(neng)的(de)(de)(de)沙(sha)粒沖(chong)(chong)(chong)蝕(shi)到(dao)帶(dai)肋(lei)鋼(gang)(gang)的(de)(de)(de)表面(mian),鋼(gang)(gang)筋(jin)表面(mian)受到(dao)沙(sha)粒撞擊(ji)(ji)(ji)(ji)(ji)產生水(shui)平(ping)切(qie)削(xue)(xue)作(zuo)(zuo)(zuo)用(yong)和(he)(he)豎直(zhi)(zhi)撞擊(ji)(ji)(ji)(ji)(ji)作(zuo)(zuo)(zuo)用(yong),此時(shi)水(shui)平(ping)切(qie)削(xue)(xue)力大于(yu)豎直(zhi)(zhi)撞擊(ji)(ji)(ji)(ji)(ji)力,鋼(gang)(gang)筋(jin)表面(mian)的(de)(de)(de)沖(chong)(chong)(chong)蝕(shi)破(po)壞主要以(yi)斜向的(de)(de)(de)切(qie)削(xue)(xue)破(po)壞為主;在(zai)高沖(chong)(chong)(chong)蝕(shi)角度時(shi),鋼(gang)(gang)筋(jin)同(tong)樣受到(dao)沙(sha)粒撞擊(ji)(ji)(ji)(ji)(ji)產生的(de)(de)(de)水(shui)平(ping)切(qie)削(xue)(xue)作(zuo)(zuo)(zuo)用(yong)和(he)(he)豎直(zhi)(zhi)撞擊(ji)(ji)(ji)(ji)(ji)作(zuo)(zuo)(zuo)用(yong),此時(shi)豎直(zhi)(zhi)撞擊(ji)(ji)(ji)(ji)(ji)力大于(yu)水(shui)平(ping)切(qie)削(xue)(xue)力,鋼(gang)(gang)筋(jin)材料(liao)因較(jiao)大的(de)(de)(de)撞擊(ji)(ji)(ji)(ji)(ji)力撞擊(ji)(ji)(ji)(ji)(ji)產生沖(chong)(chong)(chong)蝕(shi)擠(ji)壓變形,發生疲勞(lao)而導致變形剝落。一般來講,帶(dai)肋(lei)鋼(gang)(gang)的(de)(de)(de)最大沖(chong)(chong)(chong)蝕(shi)率沖(chong)(chong)(chong)擊(ji)(ji)(ji)(ji)(ji)角在(zai)15°~30°內,鋼(gang)(gang)筋(jin)材料(liao)抗沖(chong)(chong)(chong)蝕(shi)效果取決(jue)于(yu)表面(mian)氧化(hua)鐵(tie)(tie)(tie)皮良好的(de)(de)(de)強韌平(ping)衡(heng)度。若帶(dai)肋(lei)鋼(gang)(gang)氧化(hua)鐵(tie)(tie)(tie)皮結構組分與強韌度調控不(bu)當就會造成氧化(hua)鐵(tie)(tie)(tie)皮在(zai)風沙(sha)沖(chong)(chong)(chong)蝕(shi)環境中受損破(po)裂,在(zai)與外(wai)界環境相互作(zuo)(zuo)(zuo)用(yong)發生銹(xiu)蝕(shi)等問題,影響材料(liao)外(wai)觀和(he)(he)及其(qi)服(fu)役性能(neng)(neng)[22]。


1.2 雨水沖刷(shua)下帶肋鋼的(de)表面銹(xiu)蝕損傷現象與機(ji)理


雨(yu)水(shui)(shui)沖刷過程中材(cai)料腐蝕以(yi)(yi)電(dian)化學(xue)銹(xiu)(xiu)(xiu)(xiu)蝕為(wei)主,基(ji)材(cai)表面(mian)(mian)形(xing)成(cheng)以(yi)(yi)鐵素體(ti)為(wei)陽(yang)極(ji)、滲碳(tan)體(ti)為(wei)陰極(ji)的銹(xiu)(xiu)(xiu)(xiu)蝕微電(dian)池(chi)(chi)。陽(yang)極(ji)鐵失(shi)去(qu)電(dian)子形(xing)成(cheng)Fe2+進入電(dian)解(jie)池(chi)(chi),溶于電(dian)解(jie)池(chi)(chi)的O在陰極(ji)被還原生成(cheng)OH-,兩者相遇(yu)結合(he)生成(cheng)不溶于水(shui)(shui)的Fe(OH)2,產物進一步氧化生成(cheng)Fe(OH)3。材(cai)料基(ji)體(ti)表面(mian)(mian)鐵銹(xiu)(xiu)(xiu)(xiu)逐步銹(xiu)(xiu)(xiu)(xiu)蝕脫落,致使銹(xiu)(xiu)(xiu)(xiu)蝕面(mian)(mian)積逐漸增大,銹(xiu)(xiu)(xiu)(xiu)蝕現(xian)象愈加嚴重。圖1是(shi)帶肋鋼雨(yu)水(shui)(shui)沖刷過程中的電(dian)化學(xue)銹(xiu)(xiu)(xiu)(xiu)蝕機理。

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F001.png

圖1   帶肋(lei)鋼外部(bu)雨水沖(chong)刷(shua)過程中的電化學銹蝕(shi)機理[23]


雨水(shui)(shui)沖刷過(guo)程中,帶肋(lei)(lei)(lei)鋼材(cai)料表(biao)面(mian)(mian)存(cun)在(zai)以下現(xian)象[23]:(1) 同時存(cun)在(zai)化(hua)學(xue)銹(xiu)蝕(shi)和電(dian)(dian)(dian)化(hua)學(xue)銹(xiu)蝕(shi)兩種類型(xing)。流動(dong)的(de)(de)水(shui)(shui)帶有大(da)量的(de)(de)溶氧化(hua)學(xue)物質促使鋼筋表(biao)面(mian)(mian)發生化(hua)學(xue)銹(xiu)蝕(shi)和電(dian)(dian)(dian)化(hua)學(xue)銹(xiu)蝕(shi)。(2) 處于(yu)電(dian)(dian)(dian)介質水(shui)(shui)溶液包(bao)圍的(de)(de)裸露鋼筋,因鋼筋內(nei)(nei)(nei)部(bu)物相組成(cheng) (鐵素(su)體、碳化(hua)物等) 差異性與晶粒邊界/內(nei)(nei)(nei)部(bu)的(de)(de)能(neng)量差異性導致(zhi)電(dian)(dian)(dian)化(hua)學(xue)不均勻(yun)性,產(chan)生紅棕色(se)質地疏松易剝落鐵銹(xiu)。(3) 基(ji)體表(biao)面(mian)(mian)形成(cheng)外小內(nei)(nei)(nei)大(da)、較為平滑的(de)(de)點(dian)狀(zhuang)(zhuang)銹(xiu)蝕(shi)坑現(xian)象。點(dian)銹(xiu)蝕(shi)缺(que)陷(xian)相互(hu)交迭(die)形成(cheng)凹(ao)坑缺(que)陷(xian)。(4) 鋼筋橫肋(lei)(lei)(lei)部(bu)位形成(cheng)斷續分(fen)布的(de)(de)裂紋(wen)缺(que)陷(xian)。帶肋(lei)(lei)(lei)鋼在(zai)雨水(shui)(shui)沖刷過(guo)程中使鋼筋表(biao)面(mian)(mian)承受著一定的(de)(de)彎(wan)曲張應力,鋼筋橫肋(lei)(lei)(lei)部(bu)位局部(bu)應力集(ji)中,金屬(shu)能(neng)量高,金屬(shu)離子不穩(wen)定,在(zai)電(dian)(dian)(dian)介質中呈陽(yang)極狀(zhuang)(zhuang)態,易產(chan)生電(dian)(dian)(dian)化(hua)學(xue)應力銹(xiu)蝕(shi),形成(cheng)垂直分(fen)布于(yu)鋼筋表(biao)面(mian)(mian),并沿(yan)(yan)徑(jing)向由金屬(shu)表(biao)面(mian)(mian)沿(yan)(yan)晶或穿晶向基(ji)體擴展的(de)(de)裂紋(wen),同時,裂紋(wen)缺(que)陷(xian)也向周圍生長(chang),但(dan)其(qi)銹(xiu)蝕(shi)速率(lv)低于(yu)垂直主(zhu)應力方向的(de)(de)生長(chang)速率(lv),即形成(cheng)桿(gan)狀(zhuang)(zhuang)裂紋(wen)缺(que)陷(xian)。沿(yan)(yan)橫肋(lei)(lei)(lei)部(bu)位斷續分(fen)布的(de)(de)桿(gan)狀(zhuang)(zhuang)裂紋(wen)相互(hu)貫穿,嚴重(zhong)影響了材(cai)料的(de)(de)服役使用壽(shou)命。


1.3 大氣環境中的損(sun)傷(shang)機理


鋼材(cai)(cai)大氣(qi)銹(xiu)蝕(shi)(shi)是材(cai)(cai)料(liao)表面與(yu)周(zhou)圍(wei)銹(xiu)蝕(shi)(shi)性氣(qi)體介質相互反(fan)(fan)應的過程。大氣(qi)銹(xiu)蝕(shi)(shi)現(xian)象(xiang)由來(lai)已久,1995年我(wo)國因大氣(qi)銹(xiu)蝕(shi)(shi)的鋼材(cai)(cai)達5×106 t[24,25]。大氣(qi)銹(xiu)蝕(shi)(shi)現(xian)象(xiang)較為復雜,在沒(mei)有污染物及相對濕(shi)度高于(yu)70%的大氣(qi)環境(jing)中(zhong),帶肋鋼與(yu)周(zhou)圍(wei)大氣(qi)接觸并(bing)發生(sheng)以下反(fan)(fan)應[26-30]:

微信截圖_202.jpg

反應形成Fe(OH)2,沉積在金屬表面:

微信截圖_202.jpg


Fe(OH)2再繼(ji)續氧(yang)化生成鐵銹Fe(OH)3。


然而,大(da)氣組成(cheng)成(cheng)分(fen)復雜多樣,其中(zhong)CO2、SO2、NOx、H2S、NH3、HCl污(wu)染性氣體與(yu)(yu)煤煙、灰(hui)塵(chen)等含碳化(hua)合物、砂土(tu)、鹽類(lei)固體顆粒均對帶肋(lei)鋼銹蝕速率產生了嚴重(zhong)影響[31,32]。混凝土(tu)碳化(hua)與(yu)(yu)酸雨銹蝕是大(da)氣銹蝕最為典型的兩(liang)種方式[33-36]。


混(hun)(hun)凝(ning)(ning)土一般在初期(qi)呈現強堿(jian)性(xing),pH約為12~13,在鋼筋表(biao)面(mian)生(sheng)(sheng)成(cheng)一層防銹蝕的(de)鈍(dun)化膜層。大氣中(zhong)的(de)酸(suan)性(xing)物質(zhi)通過孔(kong)隙(xi)從混(hun)(hun)凝(ning)(ning)土表(biao)面(mian)滲入混(hun)(hun)凝(ning)(ning)土內部,與水泥石中(zhong)的(de)堿(jian)性(xing)物質(zhi)發(fa)生(sheng)(sheng)中(zhong)和(he)反(fan)應(ying),降低混(hun)(hun)凝(ning)(ning)土堿(jian)度使鋼筋表(biao)面(mian)的(de)鈍(dun)化膜發(fa)生(sheng)(sheng)破壞,鋼筋發(fa)生(sheng)(sheng)銹蝕現象(xiang)。


酸雨銹蝕中以(yi)SO2、H2S、HCl氣體對鋼筋銹蝕影響最大。SO2吸附(fu)在帶肋鋼基體表面與(yu)(yu)鐵反(fan)應生(sheng)成易溶于水(shui)的(de)(de)FeSO4,FeSO4水(shui)解(jie)生(sheng)成H2SO4,H2SO4繼續與(yu)(yu)Fe反(fan)應,整(zheng)個過程(cheng)具有循(xun)環往(wang)復的(de)(de)特征(zheng),反(fan)應式[37]:

微信截圖_202.jpg

H2S氣體溶于水(shui)中(zhong)(zhong)增加了H+的含量,使溶液酸化(hua)并提(ti)升(sheng)了水(shui)膜導電(dian)性,加速(su)帶肋鋼(gang)銹(xiu)蝕(shi)。HCl氣體溶于水(shui)中(zhong)(zhong)生成HCl,其(qi)中(zhong)(zhong)Cl-與陽極反應中(zhong)(zhong)產生的Fe2+結合(he)生成可(ke)溶性FeCl,銹(xiu)蝕(shi)現象循環(huan)進行,反應式[38,39]:

微信截圖_202.jpg

圖(tu)2為(wei)帶肋鋼在大氣(qi)銹蝕中形(xing)成(cheng)(cheng)的銹蝕產物(wu)。帶肋鋼銹蝕形(xing)成(cheng)(cheng)的第(di)一相化(hua)(hua)合物(wu)是Fe(OH)2,后續氧化(hua)(hua)形(xing)成(cheng)(cheng)菱(ling)形(xing)結(jie)(jie)構(gou)的晶相γ-FeOOH;γ-FeOOH在外界因素作用下演變(bian)形(xing)成(cheng)(cheng)菱(ling)形(xing)結(jie)(jie)構(gou) (α-FeOOH),銹蝕速率(lv)較低時(shi)形(xing)成(cheng)(cheng)立方(fang)結(jie)(jie)構(gou)γ-Fe2O3。四方(fang)結(jie)(jie)構(gou)β-FeOOH化(hua)(hua)合物(wu)在氯(lv)化(hua)(hua)物(wu)含量較高的環境中形(xing)成(cheng)(cheng),在一定的濕度條件(jian)下轉變(bian)為(wei)立方(fang)結(jie)(jie)構(gou)磁鐵礦 (Fe3O4)。反(fan)應式如下[40,41]:

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F002.png

圖2   帶肋(lei)鋼在(zai)大(da)氣中的銹蝕產物[41]

微信截圖_202.jpg


此外,帶(dai)肋鋼在(zai)(zai)污(wu)染(ran)物存在(zai)(zai)的銹(xiu)蝕初(chu)期階段,會在(zai)(zai)金屬表面形成所謂的“綠色鐵(tie)銹(xiu)”。綠銹(xiu)是鐵(tie) (II,III) 氫氧化物鹽(yan)的混合物,化學式(shi)如下[42-46]:

微信截圖_202.jpg

1.4 帶肋鋼在淡水中的銹蝕損傷(shang)機(ji)理


近(jin)些年來淡(dan)水(shui)等水(shui)資源污染現象嚴重(zhong),給社會發展帶來的(de)危害也日(ri)益凸顯,特別是(shi)對鋼筋(jin)混凝土(tu)結(jie)構的(de)銹(xiu)蝕破壞(huai)。一般(ban)地,帶肋鋼在淡(dan)水(shui)中的(de)銹(xiu)蝕有(you)電化(hua)學銹(xiu)蝕與微生物銹(xiu)蝕[48,49]。


淡水(shui)(shui)中一般包(bao)含有(you)多種正負離(li)(li)子 (如Ca2+、SO42-等(deng)(deng)),離(li)(li)子的存在、運動(dong)及(ji)所帶(dai)(dai)電(dian)(dian)荷的交換,使(shi)水(shui)(shui)庫、河道水(shui)(shui)形(xing)(xing)成微(wei)導電(dian)(dian)電(dian)(dian)解(jie)池,發(fa)生電(dian)(dian)化(hua)(hua)學銹(xiu)蝕(shi)[50]。在電(dian)(dian)解(jie)質溶(rong)(rong)(rong)液(ye)中,雜(za)質電(dian)(dian)位較高為(wei)陰極(ji)(ji),帶(dai)(dai)肋(lei)鋼(gang)電(dian)(dian)位較低為(wei)陽極(ji)(ji),帶(dai)(dai)肋(lei)鋼(gang)表(biao)面形(xing)(xing)成許多微(wei)電(dian)(dian)池。微(wei)電(dian)(dian)池的陽極(ji)(ji)區,Fe釋放(fang)電(dian)(dian)子,以水(shui)(shui)化(hua)(hua)離(li)(li)子形(xing)(xing)式溶(rong)(rong)(rong)解(jie)于水(shui)(shui),自由電(dian)(dian)子沿帶(dai)(dai)肋(lei)鋼(gang)基(ji)體流(liu)向陰極(ji)(ji)區,在陰極(ji)(ji)區發(fa)生物質還(huan)原(yuan),如溶(rong)(rong)(rong)解(jie)氧(yang)得到(dao)電(dian)(dian)子后成為(wei)O2-,O2-再積水(shui)(shui)作(zuo)用獲得OH-。Fe2+與OH-結(jie)合生成鐵銹(xiu)化(hua)(hua)合物。淡水(shui)(shui)中電(dian)(dian)化(hua)(hua)學銹(xiu)蝕(shi)受(shou)含氧(yang)量、淡水(shui)(shui)流(liu)速、pH及(ji)溶(rong)(rong)(rong)解(jie)元素成分等(deng)(deng)因素的影響[51-53]。


微生物銹(xiu)蝕(shi)(shi)(shi)根(gen)據不同條件(jian)分為(wei)好(hao)氧銹(xiu)蝕(shi)(shi)(shi)和厭氧銹(xiu)蝕(shi)(shi)(shi)[54,55]。好(hao)氧銹(xiu)蝕(shi)(shi)(shi)有氧差電(dian)(dian)池引起(qi)的(de)銹(xiu)蝕(shi)(shi)(shi)與(yu)代(dai)(dai)(dai)謝(xie)產(chan)物引起(qi)的(de)銹(xiu)蝕(shi)(shi)(shi)兩種形式(shi)。氧差電(dian)(dian)池引起(qi)的(de)銹(xiu)蝕(shi)(shi)(shi)中(zhong),微生物附(fu)著處的(de)O相對缺乏而成(cheng)(cheng)為(wei)陽極(ji),附(fu)近的(de)表面(mian)上氧含量(liang)相對高(gao)而成(cheng)(cheng)為(wei)陰(yin)極(ji),金屬在陽極(ji)溶解(jie),電(dian)(dian)子則遷移到陰(yin)極(ji)處與(yu)O結(jie)合形成(cheng)(cheng)金屬的(de)氧化(hua)物及(ji)其水化(hua)物。代(dai)(dai)(dai)謝(xie)產(chan)物引起(qi)的(de)銹(xiu)蝕(shi)(shi)(shi)中(zhong),硫(liu)(liu)氧化(hua)菌(jun)氧化(hua)硫(liu)(liu)元素、硫(liu)(liu)代(dai)(dai)(dai)硫(liu)(liu)酸鹽等產(chan)生代(dai)(dai)(dai)謝(xie)物H2SO4。銹(xiu)蝕(shi)(shi)(shi)機理 (以硫(liu)(liu)氧化(hua)菌(jun)為(wei)例) 可表示為(wei)[55]:


好氧銹蝕:

微信截圖_202.jpg

在厭氧(yang)銹蝕中:

微信截圖_202.jpg

SRB去(qu)極化作用:

微信截圖_202.jpg

微(wei)生(sheng)物銹(xiu)蝕的(de)(de)整個反(fan)(fan)應過(guo)程由陰(yin)極去極化(hua)驅動(dong),而陰(yin)極上H的(de)(de)消(xiao)耗速(su)度是限制(zhi)反(fan)(fan)應的(de)(de)關(guan)鍵(jian)因素。因甲烷菌(jun)(jun)、硫(liu)酸鹽還(huan)原菌(jun)(jun)和(he)乙酸菌(jun)(jun)在生(sheng)命活動(dong)中(zhong)的(de)(de)生(sheng)長代謝,消(xiao)耗了電(dian)化(hua)學產生(sheng)出的(de)(de)氫,將加速(su)對材(cai)料的(de)(de)銹(xiu)蝕過(guo)程。


2 服役環境(jing)腐蝕現象與機理


2.1 帶(dai)肋鋼在海洋環境中的腐蝕損傷機理


鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)結(jie)構由(you)于優異的(de)(de)(de)性(xing)能,在港口碼(ma)頭等(deng)工程(cheng)被大規模應用(yong)。然(ran)而隨著服役(yi)時間的(de)(de)(de)延長,鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)結(jie)構受到嚴重(zhong)的(de)(de)(de)海(hai)(hai)洋(yang)(yang)腐蝕(shi)(shi)(shi)[56-60]。研究報道,高溫、高濕、高鹽的(de)(de)(de)南(nan)海(hai)(hai)島礁(jiao)環(huan)(huan)境下鋼(gang)(gang)筋腐蝕(shi)(shi)(shi)率(lv)是一般近(jin)海(hai)(hai)環(huan)(huan)境的(de)(de)(de)31.7~125.8倍,鋼(gang)(gang)筋起銹時間不足(zu)25 a,海(hai)(hai)水侵蝕(shi)(shi)(shi)現象(xiang)尤(you)為(wei)嚴重(zhong)[61-63]。一般暴露于不同(tong)海(hai)(hai)洋(yang)(yang)區域(yu)環(huan)(huan)境條(tiao)件(jian)的(de)(de)(de)鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)結(jie)構的(de)(de)(de)腐蝕(shi)(shi)(shi)機理也不同(tong)。通常(chang)海(hai)(hai)洋(yang)(yang)腐蝕(shi)(shi)(shi)環(huan)(huan)境分(fen)為(wei)海(hai)(hai)洋(yang)(yang)大氣區、浪(lang)花飛濺區、潮(chao)(chao)差區和(he)(he)海(hai)(hai)水全浸(jin)區,如(ru)圖3所(suo)示[64]。海(hai)(hai)洋(yang)(yang)大氣區中鹽粒因風(feng)等(deng)作用(yong)沉積(ji)于鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)結(jie)構表面,吸濕形成液膜后對(dui)建筑物(wu)產(chan)生污(wu)染破壞;潮(chao)(chao)差區的(de)(de)(de)飽水部(bu)分(fen)與水下部(bu)位,以擴(kuo)散和(he)(he)滲(shen)透為(wei)主(zhu),作用(yong)于鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)建筑物(wu);浪(lang)濺區和(he)(he)潮(chao)(chao)差區的(de)(de)(de)非飽水部(bu)分(fen),其主(zhu)要以擴(kuo)散、毛(mao)細管和(he)(he)滲(shen)透共同(tong)作用(yong),海(hai)(hai)浪(lang)的(de)(de)(de)強烈撞(zhuang)擊,以及充足(zu)的(de)(de)(de)有氧環(huan)(huan)境,使(shi)此區域(yu)的(de)(de)(de)鋼(gang)(gang)筋混(hun)凝(ning)(ning)土(tu)結(jie)構腐蝕(shi)(shi)(shi)最為(wei)嚴重(zhong)[65]。

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F003.png

圖3   海(hai)洋(yang)環(huan)境中(zhong)混凝土結構不同部位(wei)受不同的(de)侵(qin)蝕(shi)[64]


海洋環境對于鋼筋(jin)混(hun)凝(ning)(ning)土(tu)結構(gou)的(de)腐(fu)(fu)蝕(shi)主要(yao)分結構(gou)中(zhong)的(de)鋼筋(jin)腐(fu)(fu)蝕(shi),主要(yao)以氯致(zhi)腐(fu)(fu)蝕(shi)為主;以及混(hun)凝(ning)(ning)土(tu)基(ji)體的(de)腐(fu)(fu)蝕(shi),主要(yao)為鎂鹽/硫酸鹽侵蝕(shi)。目前(qian)研究人員(yuan)往往將將兩方(fang)面(mian)割裂開來進行研究,或(huo)是(shi)集(ji)(ji)中(zhong)于鋼筋(jin)的(de)腐(fu)(fu)蝕(shi),或(huo)是(shi)集(ji)(ji)中(zhong)于混(hun)凝(ning)(ning)土(tu)基(ji)體的(de)侵蝕(shi),缺(que)乏兩者(zhe)綜合的(de)系(xi)統(tong)性研究[62,63,66]。


混(hun)凝(ning)(ning)(ning)(ning)土基(ji)體(ti)(ti)腐(fu)蝕方面,混(hun)凝(ning)(ning)(ning)(ning)土基(ji)體(ti)(ti)成分中(zhong)的(de)(de)Ca(OH)2與(yu)(yu)海水(shui)中(zhong)鎂(mei)鹽 (MgCl2與(yu)(yu)MgSO4等(deng)) 發生(sheng)(sheng)(sheng)(sheng)化(hua)學反應。MgCl2與(yu)(yu)Ca(OH)2反應生(sheng)(sheng)(sheng)(sheng)成易溶于水(shui)的(de)(de)CaCl2與(yu)(yu)松散而無膠凝(ning)(ning)(ning)(ning)能(neng)(neng)力的(de)(de)Mg(OH)2,且Mg(OH)2難溶于水(shui)。MgSO4與(yu)(yu)Ca(OH)2反應不(bu)僅生(sheng)(sheng)(sheng)(sheng)成松散而無膠凝(ning)(ning)(ning)(ning)能(neng)(neng)力Mg(OH)2,亦生(sheng)(sheng)(sheng)(sheng)成對(dui)水(shui)泥(ni)產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)腐(fu)蝕的(de)(de)硫(liu)酸鹽 (CaSO4·2H2O),即產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)鎂(mei)鹽與(yu)(yu)硫(liu)酸鹽雙重腐(fu)蝕。水(shui)泥(ni)中(zhong)水(shui)化(hua)產(chan)(chan)物(wu)需(xu)在(zai)一定(ding)堿度下才能(neng)(neng)穩(wen)定(ding)存在(zai),其中(zhong)Ca(OH)2維持著水(shui)泥(ni)漿體(ti)(ti)的(de)(de)堿性(xing),Ca(OH)2的(de)(de)消(xiao)耗使得水(shui)泥(ni)漿體(ti)(ti)堿度低于其他水(shui)化(hua)產(chan)(chan)物(wu)穩(wen)定(ding)存在(zai)的(de)(de)pH,此時水(shui)化(hua)硅酸鈣 (C—S—H) 等(deng)其它水(shui)化(hua)產(chan)(chan)物(wu)會隨之發生(sheng)(sheng)(sheng)(sheng)分解(jie)以維持酸堿度平衡,長時間(jian)下不(bu)斷發生(sheng)(sheng)(sheng)(sheng)的(de)(de)消(xiao)耗使水(shui)泥(ni)石膠凝(ning)(ning)(ning)(ning)性(xing)降低,孔隙率(lv)增大,強度降低,最終致使混(hun)凝(ning)(ning)(ning)(ning)土基(ji)體(ti)(ti)損壞[67,68]。


混凝土(tu)結構中(zhong)鋼(gang)筋(jin)(jin)銹蝕(shi)(shi)主(zhu)(zhu)要以氯致(zhi)腐蝕(shi)(shi)為主(zhu)(zhu)。氯致(zhi)腐蝕(shi)(shi)有4種作用機理[69-73]:(1) 破壞鈍化(hua)膜。初期高堿性混凝土(tu)在鋼(gang)筋(jin)(jin)表(biao)面形(xing)(xing)成(cheng)一層致(zhi)密的鈍化(hua)膜層,海(hai)水、水泥(ni)、水、骨(gu)料(liao)等中(zhong)的大量Cl-通過孔(kong)隙網孔(kong)和微(wei)(wei)裂紋(wen)滲透(tou)到混凝土(tu)中(zhong),在鋼(gang)筋(jin)(jin)表(biao)面產生局(ju)部匯集,致(zhi)使鋼(gang)筋(jin)(jin)表(biao)面鈍化(hua)膜由于局(ju)部酸化(hua)而(er)破壞。(2) 形(xing)(xing)成(cheng)腐蝕(shi)(shi)電(dian)池(chi)。混凝土(tu)結構中(zhong)鋼(gang)筋(jin)(jin)表(biao)面鈍化(hua)膜被Cl-積聚酸化(hua)破壞后(hou),裸露的鐵(tie)基體與鈍化(hua)膜完好區域(yu)形(xing)(xing)成(cheng)電(dian)位(wei)差(cha),形(xing)(xing)成(cheng)微(wei)(wei)電(dian)池(chi)。(3) 陽極去極化(hua)作用。Cl-可加速陽極反應過程。

微信截圖_202.jpg

Fe(OH)3失水后成為(wei)紅褐色(se)鐵銹。反應過程中Cl-起催化作用,加速了鋼筋(jin)的縱向腐(fu)蝕(shi)。(4) 提高腐(fu)蝕(shi)電(dian)流效率。Cl-能強(qiang)化腐(fu)蝕(shi)電(dian)池中的離子通路(lu),即降低陰、陽兩(liang)極之間的電(dian)阻,提高腐(fu)蝕(shi)電(dian)流效率。


鋼(gang)(gang)筋表面鈍化膜(mo)被(bei)破壞后,混(hun)凝土中的鋼(gang)(gang)筋與(yu)氧氣、濕度等因(yin)素下形成的OH-反應(ying)產生更(geng)多的鐵銹 (FeO·(H2O)x)。圖4是(shi)帶(dai)肋鋼(gang)(gang)在(zai)混(hun)凝土中的腐蝕反應(ying)原理[74-77],反應(ying)式:

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F004.png

圖4   帶肋(lei)鋼在混(hun)凝土中的(de)腐蝕反應原理[75]

微信截圖_202.jpg


2.2 核環境(jing)中(zhong)的(de)帶肋(lei)鋼腐蝕(shi)現(xian)象與機理


核(he)電設(she)備常(chang)用鋼(gang)鐵材(cai)料(liao)為AISI304L不(bu)銹(xiu)鋼(gang),長(chang)期(qi)服役于高溫、高壓、強腐(fu)蝕(shi)和輻射性極端環境中,導致核(he)電設(she)備關鍵部(bu)件(jian)及整機表(biao)面發生嚴重材(cai)料(liao)腐(fu)蝕(shi)行為,造成核(he)電設(she)備失效(xiao)。壓水反應(ying)堆核(he)電設(she)備的主要腐(fu)蝕(shi)機制(zhi)為均(jun)勻腐(fu)蝕(shi)與應(ying)力腐(fu)蝕(shi)開裂[75]。


均勻(yun)腐(fu)(fu)(fu)蝕(shi)(shi)直接危害核(he)電(dian)(dian)設備(bei)組(zu)件(jian)壁(bi)厚,有核(he)泄漏等潛在(zai)危害。均勻(yun)腐(fu)(fu)(fu)蝕(shi)(shi)產物若隨(sui)流(liu)動介(jie)質發生(sheng)遷(qian)移(yi),將間(jian)接引起(qi)部件(jian)局(ju)部腐(fu)(fu)(fu)蝕(shi)(shi)。例(li)如支(zhi)撐板間(jian)的(de)環(huan)向縫隙因(yin)二回路腐(fu)(fu)(fu)蝕(shi)(shi)產物聚集(ji)而導(dao)致傳熱管凹陷等現(xian)(xian)象。均勻(yun)腐(fu)(fu)(fu)蝕(shi)(shi)現(xian)(xian)象在(zai)核(he)電(dian)(dian)廠中極為(wei)普遍,碳(tan)鋼(gang)與常規(gui)的(de)低(di)合金鋼(gang)在(zai)高(gao)溫高(gao)壓水、酸(suan)堿溶液等環(huan)境中易腐(fu)(fu)(fu)蝕(shi)(shi),反應堆壓力容器合金及鋼(gang)部件(jian)發生(sheng)的(de)硼酸(suan)腐(fu)(fu)(fu)蝕(shi)(shi)等。由(you)于均勻(yun)腐(fu)(fu)(fu)蝕(shi)(shi)對核(he)電(dian)(dian)廠設備(bei)的(de)安全(quan)性影(ying)響不(bu)是很大,通過(guo)合理的(de)選材及防腐(fu)(fu)(fu)處(chu)理可得(de)到有效的(de)緩解[79]。


應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie) (SCC) 是(shi)指(zhi)在機(ji)械、電化學(xue)和冶金等(deng)多(duo)種因素協同作用,致使材料(liao)產生(sheng)(sheng)局部萌(meng)生(sheng)(sheng)裂(lie)(lie)(lie)(lie)(lie)紋(wen)(wen)及亞臨界裂(lie)(lie)(lie)(lie)(lie)紋(wen)(wen)擴(kuo)展(zhan),長(chang)期(qi)積累的(de)SCC就(jiu)會(hui)導致核設備材料(liao)的(de)突發(fa)性(xing)開裂(lie)(lie)(lie)(lie)(lie)。核電廠腐(fu)(fu)(fu)蝕(shi)失(shi)效機(ji)理主要以應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie)為主。應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie)類(lei)型(xing)較多(duo),其包括輻照促進應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie) (IASCC)、一(yi)次側(ce)應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie) (PWSCC)、二次側(ce)應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie) (ODSCC) 三類(lei),均(jun)是(shi)因其有別于其他工業領域的(de)特殊(shu)運行(xing)工況(kuang)所致。由于應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie)中(zhong)部件受腐(fu)(fu)(fu)蝕(shi)介質與拉應(ying)力的(de)相互作用,既使兩者分(fen)別處(chu)在較低水(shui)平都會(hui)引(yin)發(fa)裂(lie)(lie)(lie)(lie)(lie)紋(wen)(wen)萌(meng)生(sheng)(sheng),裂(lie)(lie)(lie)(lie)(lie)紋(wen)(wen)一(yi)旦達到臨界尺寸 (孕(yun)育期(qi)) 便會(hui)迅速(su)(su)擴(kuo)展(zhan) (擴(kuo)展(zhan)期(qi)) 成穿晶(jing)或(huo)沿晶(jing)裂(lie)(lie)(lie)(lie)(lie)紋(wen)(wen),最終導致材料(liao)發(fa)生(sheng)(sheng)脆性(xing)斷裂(lie)(lie)(lie)(lie)(lie)。其中(zhong)不銹鋼材料(liao)以輻照促進應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie)為代(dai)表的(de)輻照加速(su)(su)腐(fu)(fu)(fu)蝕(shi)失(shi)效是(shi)核電站(zhan)安全高效運行(xing)的(de)關鍵問題之一(yi)[80-83]。圖5是(shi)發(fa)生(sheng)(sheng)應(ying)力腐(fu)(fu)(fu)蝕(shi)開裂(lie)(lie)(lie)(lie)(lie)的(de)機(ji)理[78]。

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F005.png

圖5   應力腐(fu)蝕(shi)開裂(lie) (SCC) 機理[78]


目前國內外廣泛采(cai)用(yong)(yong)A508III (Gr.3C1.1) 和16MND5等低合金鋼(gang)(gang)作為反(fan)應堆(dui)壓力容器(qi)(qi)材料(liao)(liao),合金鋼(gang)(gang)容器(qi)(qi)內壁堆(dui)焊不銹鋼(gang)(gang)以(yi)防止與(yu)冷卻劑的(de)接觸產生(sheng)腐蝕。而蒸汽發(fa)生(sheng)器(qi)(qi)則多(duo)采(cai)用(yong)(yong)690、800等鎳基合金材料(liao)(liao)。反(fan)應堆(dui)內構件多(duo)采(cai)用(yong)(yong)奧氏(shi)體(ti)不銹鋼(gang)(gang)及部分鎳基合金,關于(yu)核設(she)備(bei)用(yong)(yong)鋼(gang)(gang)鐵材料(liao)(liao)在(zai)高(gao)溫高(gao)壓水腐蝕疲勞(lao)損(sun)傷(shang)(shang)的(de)研(yan)(yan)究(jiu),由于(yu)缺乏(fa)微觀裂(lie)紋萌生(sheng)和擴展過程的(de)直接實(shi)驗證據,到(dao)底是(shi)(shi)氫致開裂(lie)機制還是(shi)(shi)滑移(yi)溶解機制控制著鋼(gang)(gang)鐵材料(liao)(liao)環境疲勞(lao)損(sun)傷(shang)(shang),尚存在(zai)較大爭議[84]。對核電設(she)備(bei)用(yong)(yong)鋼(gang)(gang)鐵材料(liao)(liao)服役(yi)弱 (老(lao)) 化機理及發(fa)生(sheng)規律、壽命設(she)計(ji)和預測模型(xing)的(de)認識還十(shi)分缺乏(fa),相關研(yan)(yan)究(jiu)工作仍(reng)是(shi)(shi)核設(she)施腐蝕的(de)研(yan)(yan)究(jiu)熱點。


3 帶(dai)肋鋼(gang)在(zai)苛刻(ke)工況環境下的(de)防腐蝕技術


目(mu)前,國內外(wai)帶(dai)肋鋼(gang)的(de)生(sheng)產(chan)普遍采用(yong)穿(chuan)水冷卻技術,該工(gong)藝(yi)是一(yi)種(zhong)表面(mian)相變強化技術,在改(gai)善螺(luo)紋(wen)鋼(gang)力學(xue)性能方(fang)面(mian)有(you)(you)很(hen)好的(de)效(xiao)(xiao)果。然而穿(chuan)水冷卻生(sheng)產(chan)的(de)螺(luo)紋(wen)鋼(gang)在服役、儲存和(he)運輸(shu)過程中很(hen)容易腐(fu)蝕(shi)(shi)生(sheng)銹,嚴重影響(xiang)了螺(luo)紋(wen)鋼(gang)的(de)質(zhi)量。腐(fu)蝕(shi)(shi)引起的(de)混凝土結構(gou)失效(xiao)(xiao)給社會發展帶(dai)來(lai)巨大(da)損失。因而,采取有(you)(you)效(xiao)(xiao)的(de)措施(shi)減緩螺(luo)紋(wen)鋼(gang)的(de)腐(fu)蝕(shi)(shi)變得尤為重要(yao)。截至目(mu)前,防止鋼(gang)鐵制(zhi)品(pin)腐(fu)蝕(shi)(shi)的(de)措施(shi)主要(yao)有(you)(you)改(gai)變鋼(gang)鐵內部(bu)結構(gou)與表面(mian)防腐(fu)蝕(shi)(shi)工(gong)程技術兩種(zhong)方(fang)法。


3.1 改變(bian)鋼鐵內(nei)部結(jie)構技術


3.1.1 改變材料中部分構成元素(su)含量(liang)


金(jin)屬(shu)材(cai)料中(zhong)(zhong)部分元素 (C、Mo、N、Cr、Ni等) 含(han)量(liang)通(tong)常會對材(cai)料的(de)(de)抗腐(fu)(fu)蝕(shi)(shi)能(neng)(neng)(neng)(neng)力(li)(li)有(you)(you)(you)極(ji)(ji)大改善。文獻[85]研(yan)究指出(chu),在金(jin)屬(shu)材(cai)料中(zhong)(zhong)添加(jia)(jia)C、Mo和N可(ke)以(yi)(yi)(yi)降低(di)材(cai)料表(biao)面活性(xing),提(ti)升(sheng)材(cai)料表(biao)面抗腐(fu)(fu)蝕(shi)(shi)效應。Barker等[86]研(yan)究了不同Cr含(han)量(liang)鋼(gang)(gang)(gang)的(de)(de)抗沖(chong)刷腐(fu)(fu)蝕(shi)(shi)能(neng)(neng)(neng)(neng)力(li)(li),Cr含(han)量(liang)8%以(yi)(yi)(yi)上(shang)的(de)(de)鋼(gang)(gang)(gang)普遍具(ju)有(you)(you)(you)馬氏(shi)體(ti)(ti)、雙相(xiang)和亞穩奧(ao)氏(shi)體(ti)(ti)的(de)(de)混合(he)結(jie)構(gou),具(ju)有(you)(you)(you)高加(jia)(jia)工硬化(hua)(hua)的(de)(de)潛(qian)力(li)(li),有(you)(you)(you)較(jiao)(jiao)強的(de)(de)抗沖(chong)刷腐(fu)(fu)蝕(shi)(shi)的(de)(de)能(neng)(neng)(neng)(neng)力(li)(li)。Ni可(ke)以(yi)(yi)(yi)穩定不銹鋼(gang)(gang)(gang)的(de)(de)奧(ao)氏(shi)體(ti)(ti)相(xiang)進(jin)而(er)增強電(dian)(dian)(dian)極(ji)(ji)表(biao)面的(de)(de)鈍化(hua)(hua)能(neng)(neng)(neng)(neng)力(li)(li)[84]。鋼(gang)(gang)(gang)中(zhong)(zhong)γ相(xiang)具(ju)有(you)(you)(you)韌性(xing)好、形(xing)(xing)變(bian)(bian)強化(hua)(hua)能(neng)(neng)(neng)(neng)力(li)(li)高等特(te)點,α相(xiang)硬度(du)也較(jiao)(jiao)低(di),σ相(xiang)卻具(ju)有(you)(you)(you)較(jiao)(jiao)脆、硬度(du)較(jiao)(jiao)高的(de)(de)特(te)點[86]。王國華(hua)等[89]研(yan)究指出(chu),不銹鋼(gang)(gang)(gang)中(zhong)(zhong)提(ti)高Cr和Mo等鐵素體(ti)(ti)形(xing)(xing)成元素的(de)(de)含(han)量(liang),既能(neng)(neng)(neng)(neng)縮短相(xiang)形(xing)(xing)成的(de)(de)孕育期,同時提(ti)高了σ相(xiang)穩定存在的(de)(de)上(shang)限溫度(du)。Wu等[90]研(yan)究認為,Mo含(han)量(liang)的(de)(de)增加(jia)(jia)能(neng)(neng)(neng)(neng)提(ti)升(sheng)電(dian)(dian)(dian)極(ji)(ji)表(biao)面鈍化(hua)(hua)能(neng)(neng)(neng)(neng)力(li)(li),增強其(qi)抗電(dian)(dian)(dian)化(hua)(hua)學腐(fu)(fu)蝕(shi)(shi)及沖(chong)刷腐(fu)(fu)蝕(shi)(shi)性(xing)能(neng)(neng)(neng)(neng)。Ilevbare等[87]研(yan)究了不銹鋼(gang)(gang)(gang)中(zhong)(zhong)Mo對材(cai)料性(xing)能(neng)(neng)(neng)(neng)的(de)(de)影響,認為Mo可(ke)能(neng)(neng)(neng)(neng)以(yi)(yi)(yi)鉬(mu)酸鹽的(de)(de)形(xing)(xing)式融入金(jin)屬(shu)的(de)(de)氧化(hua)(hua)膜中(zhong)(zhong),改變(bian)(bian)了氧化(hua)(hua)膜的(de)(de)離子選擇性(xing),使得(de)Cl-難以(yi)(yi)(yi)通(tong)過;同時,Mo的(de)(de)存在可(ke)以(yi)(yi)(yi)增加(jia)(jia)電(dian)(dian)(dian)極(ji)(ji)表(biao)面鈍化(hua)(hua)膜的(de)(de)厚度(du)。


3.1.2 調控生產工藝(yi)參數形成(cheng)致(zhi)密(mi)氧化(hua)鐵(tie)皮(pi)


致密氧(yang)(yang)化(hua)(hua)鐵皮(pi)是(shi)利用帶(dai)肋(lei)鋼在(zai)連鑄和軋(ya)制(zhi)過(guo)(guo)程(cheng)中,鋼材(cai)(cai)表面在(zai)環境介(jie)質 (空氣、水(shui)蒸汽(qi)、氧(yang)(yang)氣等(deng)) 的(de)(de)作用下生成Fe氧(yang)(yang)化(hua)(hua)物層的(de)(de)現象(xiang),通過(guo)(guo)調控(kong)鐵氧(yang)(yang)化(hua)(hua)物層組分及組成,提(ti)(ti)升材(cai)(cai)料(liao)(liao)防腐(fu)(fu)、耐摩擦磨(mo)損性能(neng)[88]。帶(dai)肋(lei)鋼表面氧(yang)(yang)化(hua)(hua)鐵皮(pi)由內(nei)向(xiang)外(wai)由三(san)層Fe的(de)(de)氧(yang)(yang)化(hua)(hua)物組成,依(yi)次是(shi)FeO層、Fe3O4層與Fe2O3層[91]。Fe2O3層呈紅(hong)褐色且(qie)(qie)較(jiao)致密;Fe3O4層呈黑(hei)色且(qie)(qie)致密而(er)無裂紋;FeO層疏松多(duo)(duo)孔、易被破壞。這些氧(yang)(yang)化(hua)(hua)物的(de)(de)氧(yang)(yang)含量由外(wai)到內(nei)逐漸減小,并且(qie)(qie)外(wai)層致密,內(nei)層疏松多(duo)(duo)孔。文(wen)獻[92-94]對(dui)Fe氧(yang)(yang)化(hua)(hua)層的(de)(de)演變過(guo)(guo)程(cheng)研究證明(ming),高(gao)于或(huo)低于570 ℃時,氧(yang)(yang)化(hua)(hua)層中的(de)(de)3種物相結(jie)構之間均存在(zai)不同程(cheng)度的(de)(de)物相結(jie)構轉變。通過(guo)(guo)合理調節FeO、Fe2O3及Fe3O4物相生成厚度的(de)(de)相對(dui)比例及表面缺陷,提(ti)(ti)高(gao)材(cai)(cai)料(liao)(liao)自身抵御風沙沖蝕和雨(yu)水(shui)沖刷等(deng)苛刻工況環境的(de)(de)抗腐(fu)(fu)蝕性能(neng)。


3.2 表面(mian)防腐蝕工程(cheng)技術(shu)


表(biao)面防(fang)腐(fu)蝕工(gong)程技術主要包括:涂層技術、緩(huan)蝕劑技術、電(dian)化學(xue)防(fang)護(hu)技術等(deng)(deng),各種防(fang)腐(fu)蝕技術相(xiang)互(hu)聯系、相(xiang)互(hu)滲透。相(xiang)比改變鋼鐵(tie)材料內部(bu)結構,表(biao)面防(fang)腐(fu)蝕工(gong)程技術簡(jian)單高效、成本(ben)低廉,對碳鋼等(deng)(deng)金屬制(zhi)品能起到很好的防(fang)護(hu)作用。


3.2.1 涂層(ceng)技(ji)術


涂(tu)層(ceng)(ceng)技(ji)術即將涂(tu)料(liao)涂(tu)覆在鋼鐵材料(liao)的表面上,形成(cheng)具(ju)(ju)有一定機械(xie)強度、一層(ceng)(ceng)或多層(ceng)(ceng)復(fu)合(he)的固(gu)態(tai)薄膜,稱為涂(tu)層(ceng)(ceng)。涂(tu)層(ceng)(ceng)具(ju)(ju)有防止或延緩構件(jian)的腐蝕(shi)(shi)、提(ti)高構件(jian)的耐磨(mo)性能、裝(zhuang)飾構件(jian)等(deng)作用。特殊涂(tu)層(ceng)(ceng)還具(ju)(ju)有絕(jue)緣、屏蔽(bi)電磁波(bo)、防靜電等(deng)功能。目前(qian)抗(kang)沖蝕(shi)(shi)磨(mo)損(sun)涂(tu)層(ceng)(ceng)按其抗(kang)沖蝕(shi)(shi)作用原理大致可分為硬質與超(chao)硬涂(tu)層(ceng)(ceng)、彈性涂(tu)層(ceng)(ceng)、自潤滑涂(tu)層(ceng)(ceng)以及仿生涂(tu)層(ceng)(ceng)等(deng)。


硬(ying)(ying)質(zhi)涂(tu)層起步較早(zao)且(qie)應用最(zui)廣,一般為過渡族金屬(shu)與(yu)非金屬(shu)構成的(de)化(hua)(hua)合物、金屬(shu)間化(hua)(hua)合物等,涂(tu)層硬(ying)(ying)度均在10 GPa以上。除高硬(ying)(ying)度以外(wai),高韌性(xing)也同樣重(zhong)要。保證自身的(de)高硬(ying)(ying)度和(he)高韌性(xing)同時具備并(bing)且(qie)達到一個(ge)最(zui)佳比例才能使涂(tu)層具有(you)良好的(de)抗沖(chong)蝕磨損性(xing)能。硬(ying)(ying)質(zhi)與(yu)超(chao)硬(ying)(ying)涂(tu)層制備技術包含物理(li)氣相(xiang)沉積(ji) ( PVD)、化(hua)(hua)學氣相(xiang)沉積(ji) (CVD) 以及熱噴(pen)涂(tu)等。


文獻(xian)[18]采用彈性涂(tu)(tu)層(ceng)實現回避粒子(zi)接觸的抗沖蝕(shi)(shi)設計理論,建立了彈性涂(tu)(tu)層(ceng)沖蝕(shi)(shi)損傷(shang)的定量描述模(mo)型。由于涂(tu)(tu)層(ceng)容易(yi)發生彈性形變,可將(jiang)入射粒子(zi)的沖擊能轉(zhuan)化(hua)為本身的彈性應變,從而保護基材不受沖蝕(shi)(shi),提升涂(tu)(tu)層(ceng)的耐沖蝕(shi)(shi)能力。


混凝(ning)土(tu)表面涂(tu)(tu)層(ceng)技術。通過混凝(ning)土(tu)表面涂(tu)(tu)層(ceng)處理可以(yi)有效阻止Cl-及碳(tan)化物等(deng)侵(qin)蝕因子的危(wei)害。現有的混凝(ning)土(tu)表面涂(tu)(tu)層(ceng)技術主要是聚合物改性水泥砂漿與滲透型(xing)涂(tu)(tu)層(ceng)。


環氧(yang)涂層(ceng)鋼(gang)(gang)筋(jin)。通過借(jie)助環氧(yang)涂層(ceng)與鋼(gang)(gang)筋(jin)之(zhi)間(jian)的(de)(de)強粘結度,保護鋼(gang)(gang)筋(jin)不受外界腐蝕(shi)介質的(de)(de)侵蝕(shi)。美國材料研究協會數據顯示,環氧(yang)涂層(ceng)鋼(gang)(gang)筋(jin)的(de)(de)使用壽命可延長20 a以上。


層(ceng)(ceng)狀雙金屬氫氧化(hua)物 (LDHs) 是(shi)一類重要(yao)的(de)陰離子型黏土(tu)材料[93]。目前LDHs應用(yong)在腐(fu)蝕(shi)防(fang)護(hu)中主要(yao)有兩種路徑,一是(shi)通過(guo)LDHs材料中陰離子可交換性使其成為(wei)(wei)(wei)(wei)緩蝕(shi)劑的(de)微納米(mi)級存儲器,將其作為(wei)(wei)(wei)(wei)摻雜(za)劑摻入涂層(ceng)(ceng)中,加強涂層(ceng)(ceng)對(dui)基體(ti)的(de)主動防(fang)護(hu)作用(yong)。二是(shi)直(zhi)接將其作為(wei)(wei)(wei)(wei)防(fang)腐(fu)薄膜,對(dui)金屬基底起到短(duan)期(qi)防(fang)護(hu)作用(yong);或是(shi)以此(ci)薄膜作為(wei)(wei)(wei)(wei)預處理層(ceng)(ceng),后續(xu)涂覆有機(ji)涂層(ceng)(ceng),起到長期(qi)防(fang)護(hu)作用(yong)。


3.2.2 緩蝕劑技(ji)術


緩蝕(shi)(shi)劑技術因用(yong)量小、緩蝕(shi)(shi)效率高、制備(bei)過(guo)程簡單、可循環(huan)使(shi)用(yong),對環(huan)境(jing)污(wu)染和人體危害性小而被廣泛運(yun)用(yong)于工業鍋(guo)爐(lu)、海(hai)洋工程、石油管(guan)道、蒸汽冷凝管(guan)線(xian)以及鋼筋混凝土結(jie)構等領(ling)域的防腐(fu)蝕(shi)(shi)。常用(yong)的緩蝕(shi)(shi)物(wu)質有無機緩蝕(shi)(shi)劑、有機緩蝕(shi)(shi)劑以及蒸汽緩蝕(shi)(shi)劑等。


無機緩(huan)蝕(shi)(shi)(shi)(shi)劑(ji)(ji)一般包括硼(peng)酸(suan)(suan)(suan)(suan)鹽(yan)、磷酸(suan)(suan)(suan)(suan)鹽(yan)、硅酸(suan)(suan)(suan)(suan)鹽(yan)以及鉬酸(suan)(suan)(suan)(suan)鹽(yan)等。無機緩(huan)蝕(shi)(shi)(shi)(shi)與鋼(gang)(gang)材界面(mian)反應生(sheng)成(cheng)一層致密(mi)鈍(dun)化膜(mo),延緩(huan)鋼(gang)(gang)鐵腐蝕(shi)(shi)(shi)(shi)[94]。亞硝(xiao)酸(suan)(suan)(suan)(suan)鹽(yan)、鉻酸(suan)(suan)(suan)(suan)鹽(yan)雖然對鋼(gang)(gang)材具有(you)較好的(de)(de)緩(huan)蝕(shi)(shi)(shi)(shi)效果,但是(shi)其(qi)對環(huan)境(jing)污染大,對人體(ti)有(you)毒害(hai)作用(yong)(yong)。鉬酸(suan)(suan)(suan)(suan)鈉緩(huan)蝕(shi)(shi)(shi)(shi)劑(ji)(ji)緩(huan)蝕(shi)(shi)(shi)(shi)效率高、穩定(ding)性好、低(di)毒無公害(hai),適用(yong)(yong)于高pH、高硬水和較高的(de)(de)溫度條件。鉬酸(suan)(suan)(suan)(suan)鹽(yan)緩(huan)蝕(shi)(shi)(shi)(shi)作用(yong)(yong)是(shi)在(zai)(zai)鋼(gang)(gang)筯表面(mian)形成(cheng)Fe-MoO4-Fe2O3鈍(dun)化膜(mo),此膜(mo)十分致密(mi),隔離了鋼(gang)(gang)筋表面(mian)的(de)(de)Cl-的(de)(de)侵(qin)蝕(shi)(shi)(shi)(shi)。由于鉬酸(suan)(suan)(suan)(suan)鹽(yan)價格相對較高,現(xian)基本上與其(qi)他(ta)緩(huan)蝕(shi)(shi)(shi)(shi)劑(ji)(ji)混(hun)配使(shi)用(yong)(yong)。聚磷酸(suan)(suan)(suan)(suan)鹽(yan)中(zhong)(zhong)廣泛應用(yong)(yong)的(de)(de)為三聚磷酸(suan)(suan)(suan)(suan)鈉和六偏磷酸(suan)(suan)(suan)(suan)鈉。其(qi)緩(huan)蝕(shi)(shi)(shi)(shi)機理主要是(shi)在(zai)(zai)水中(zhong)(zhong)有(you)溶(rong)解(jie)氧存(cun)在(zai)(zai)下,它(ta)在(zai)(zai)促進鋼(gang)(gang)表面(mian)上生(sheng)成(cheng)γ-Fe2O3的(de)(de)同時,可(ke)與兩種金屬(shu)形成(cheng)鰲合物沉積在(zai)(zai)鋼(gang)(gang)表面(mian)形成(cheng)保護膜(mo),目前該類鹽(yan)常與其(qi)他(ta)緩(huan)蝕(shi)(shi)(shi)(shi)劑(ji)(ji)混(hun)配使(shi)用(yong)(yong)。


有(you)(you)機緩(huan)蝕(shi)(shi)(shi)劑大(da)多(duo)數含P、N、S、O等原子,比較(jiao)常用的有(you)(you)吡啶類化(hua)合(he)物(wu)、硫脲及(ji)其(qi)衍生物(wu)以及(ji)有(you)(you)機胺等。此類物(wu)質(zhi)與鋼(gang)(gang)鐵表面的Fe通過(guo)絡合(he)吸(xi)附形成牢固的吸(xi)附膜,阻礙鋼(gang)(gang)材基體與腐蝕(shi)(shi)(shi)介(jie)質(zhi)的直接接觸,從而起到緩(huan)蝕(shi)(shi)(shi)作用[48]。當(dang)AVMHT用量為(wei)(wei)100 mg/L,溫(wen)(wen)度(du)在60~100 ℃時,緩(huan)蝕(shi)(shi)(shi)率可(ke)達(da)94.4%,但(dan)是此吸(xi)附膜與鋼(gang)(gang)筋的結(jie)合(he)力(li)較(jiao)差,弱(ruo)于鈍化(hua)膜與鋼(gang)(gang)筋的結(jie)合(he)力(li)。文(wen)獻報道(dao)了一種(zhong)離(li)(li)(li)(li)子液(ye)(ye)體用作碳鋼(gang)(gang)緩(huan)蝕(shi)(shi)(shi)劑的方法[95]。該離(li)(li)(li)(li)子液(ye)(ye)體由(you)1-辛基-2-吡咯(ge)烷酮陽離(li)(li)(li)(li)子和無(wu)機或有(you)(you)機陰(yin)(yin)離(li)(li)(li)(li)子組成,其(qi)中陰(yin)(yin)離(li)(li)(li)(li)子為(wei)(wei):HSO4-、NO3-、H2PO4-、CH3COO-、PTSA-以及(ji)Br-等,其(qi)中鹽酸介(jie)質(zhi)溶液(ye)(ye)濃(nong)度(du)為(wei)(wei)0.1~3 mol/L,溶液(ye)(ye)溫(wen)(wen)度(du)為(wei)(wei)15~70 ℃,離(li)(li)(li)(li)子液(ye)(ye)體加入濃(nong)度(du)為(wei)(wei)0.5~5 mol/L時,延緩(huan)碳鋼(gang)(gang)腐蝕(shi)(shi)(shi)率高達(da)90%以上。


蒸(zheng)(zheng)汽(qi)(qi)緩(huan)蝕(shi)劑(ji)(ji)(ji)。鋼(gang)材(cai)在相(xiang)對(dui)濕(shi)(shi)(shi)度(du)(du)小于40%的(de)環境中(zhong)腐(fu)蝕(shi)的(de)可能性(xing)(xing)較(jiao)小,相(xiang)對(dui)濕(shi)(shi)(shi)度(du)(du)在40%~60%之間可以發生腐(fu)蝕(shi),但速率較(jiao)低;當相(xiang)對(dui)濕(shi)(shi)(shi)度(du)(du)比(bi)例大于60%時(shi),材(cai)料腐(fu)蝕(shi)速度(du)(du)急劇增長。因(yin)而控制空氣濕(shi)(shi)(shi)度(du)(du),特別是相(xiang)對(dui)濕(shi)(shi)(shi)度(du)(du),消(xiao)除水分是抑(yi)制大氣腐(fu)蝕(shi)速率的(de)關鍵。相(xiang)關實驗研(yan)究證明(ming)[29],鋼(gang)鐵(tie)材(cai)料表界面使用蒸(zheng)(zheng)汽(qi)(qi)緩(huan)蝕(shi)劑(ji)(ji)(ji) (VCI),可以使得(de)金屬和水之間面形成單分子(zi)膜(mo)的(de)化合物(wu)(wu)。圖6是蒸(zheng)(zheng)汽(qi)(qi)緩(huan)蝕(shi)劑(ji)(ji)(ji)原理[29]。在鋼(gang)材(cai)表面的(de)抑(yi)制劑(ji)(ji)(ji)薄膜(mo)中(zhong),分子(zi)的(de)一端(duan)是親水性(xing)(xing)的(de),另一端(duan)是疏水性(xing)(xing)的(de)。蒸(zheng)(zheng)汽(qi)(qi)緩(huan)蝕(shi)劑(ji)(ji)(ji)的(de)吸(xi)(xi)附能約為-10~14 kJ/mol,在金屬表面具有很強(qiang)的(de)物(wu)(wu)理吸(xi)(xi)附性(xing)(xing)。蒸(zheng)(zheng)汽(qi)(qi)緩(huan)蝕(shi)劑(ji)(ji)(ji)中(zhong)疏水端(duan)使得(de)材(cai)料與腐(fu)蝕(shi)性(xing)(xing)物(wu)(wu)質的(de)任何表面接觸最小化,從而增強(qiang)材(cai)料的(de)抗腐(fu)蝕(shi)性(xing)(xing)能。

73693377-F150-4d0f-ACAA-6F1EA7FF06CB-F004.png

圖(tu)6   蒸汽緩蝕劑(ji)原理圖(tu)[29]


3.2.3 電(dian)化學防(fang)護技術(shu)


金(jin)屬-電(dian)解質溶(rong)解腐蝕體系受(shou)到陰極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)時,電(dian)位(wei)(wei)負(fu)移,金(jin)屬陽(yang)極(ji)(ji)(ji)氧化(hua)反(fan)應(ying)過電(dian)位(wei)(wei)減(jian)小(xiao),反(fan)應(ying)速度(du)減(jian)小(xiao),因而(er)金(jin)屬腐蝕速度(du)減(jian)小(xiao),稱為陰極(ji)(ji)(ji)保(bao)護(hu)效應(ying)。電(dian)化(hua)學(xue) (陰極(ji)(ji)(ji)) 保(bao)護(hu)法分兩(liang)種:外加(jia)電(dian)流陰極(ji)(ji)(ji)保(bao)護(hu)和(he)犧牲(sheng)陽(yang)極(ji)(ji)(ji)陰極(ji)(ji)(ji)保(bao)護(hu)。


犧牲陽(yang)極陰(yin)極保護是將電(dian)(dian)位(wei)更負的(de)(de)(de)金(jin)(jin)屬(shu)與被保護金(jin)(jin)屬(shu)連(lian)接,并處于(yu)同一(yi)電(dian)(dian)解質中(zhong),使(shi)該(gai)(gai)金(jin)(jin)屬(shu)上的(de)(de)(de)電(dian)(dian)子轉移到被保護金(jin)(jin)屬(shu)上去,使(shi)整個被保護金(jin)(jin)屬(shu)處于(yu)一(yi)個較負的(de)(de)(de)相同的(de)(de)(de)電(dian)(dian)位(wei)下。該(gai)(gai)方式(shi)簡便(bian)易行,不(bu)需要外加電(dian)(dian)源,很(hen)少產生腐(fu)蝕干擾,廣泛應用(yong)于(yu)保護小型 (電(dian)(dian)流一(yi)般(ban)小于(yu)1A) 金(jin)(jin)屬(shu)結構。對(dui)于(yu)犧牲陽(yang)極的(de)(de)(de)使(shi)用(yong)有很(hen)多失(shi)敗的(de)(de)(de)教訓,失(shi)敗的(de)(de)(de)主要原(yuan)因是陽(yang)極表面生成(cheng)一(yi)層不(bu)導電(dian)(dian)的(de)(de)(de)硬殼,限制了陽(yang)極的(de)(de)(de)電(dian)(dian)流輸(shu)出。


外加電(dian)流陰極保(bao)(bao)護是通過外加直流電(dian)源以(yi)及輔助陽極,迫(po)使電(dian)流從介(jie)質中流向被保(bao)(bao)護金(jin)屬,使被保(bao)(bao)護金(jin)屬結構電(dian)位低于(yu)周圍環境(jing)。該方式主要用于(yu)保(bao)(bao)護大型金(jin)屬結構。


4 帶(dai)肋鋼腐(fu)蝕防護未來發展的幾點思考


美國科學(xue)院研(yan)究(jiu)指出目(mu)前腐(fu)蝕(shi)領域存(cun)在4種(zhong)亟待解決的(de)(de)問題:(1) 研(yan)究(jiu)探索低成(cheng)本環境友好型(xing)耐腐(fu)蝕(shi)材(cai)料及(ji)涂層;(2) 模擬研(yan)究(jiu)現(xian)(xian)(xian)實服(fu)役環境中腐(fu)蝕(shi)的(de)(de)高保真模型(xing);(3) 探索開發對現(xian)(xian)(xian)實服(fu)役環境中腐(fu)蝕(shi)行為進行定量關(guan)聯可控的(de)(de)實驗室加速(su)實驗方法;(4) 實現(xian)(xian)(xian)精確預測(ce)現(xian)(xian)(xian)有設備修理(li)、更(geng)換及(ji)停(ting)用的(de)(de)壽命時限。結合帶肋鋼(gang)目(mu)前生產及(ji)苛刻工況下服(fu)役過程(cheng)中存(cun)在的(de)(de)腐(fu)蝕(shi)現(xian)(xian)(xian)象,探索新(xin)型(xing)防護技術。具體為以下幾個方面。


4.1 帶肋(lei)鋼腐蝕機理研究(jiu)


有必要針(zhen)對(dui)影響帶(dai)肋鋼(gang)在各服(fu)役環(huan)境(jing)中(zhong)的(de)腐(fu)蝕(shi)(shi)因子進行相關的(de)研究,分析不(bu)同工況下帶(dai)肋鋼(gang)的(de)腐(fu)蝕(shi)(shi)機理。根據(ju)不(bu)同工況環(huan)境(jing)下腐(fu)蝕(shi)(shi)發生的(de)機理,分析腐(fu)蝕(shi)(shi)條件下防護(hu)的(de)關鍵要素,為(wei)帶(dai)肋鋼(gang)的(de)工業化生產及(ji)應用(yong)提供技(ji)術支持。


4.2 混凝土損傷機理研(yan)究


混(hun)凝(ning)(ning)(ning)(ning)土(tu)開裂破損致使鋼(gang)(gang)筋(jin)(jin)與外界腐(fu)蝕因(yin)子接(jie)觸,從而影響鋼(gang)(gang)筋(jin)(jin)混(hun)凝(ning)(ning)(ning)(ning)土(tu)結構的(de)耐久(jiu)性。明確混(hun)凝(ning)(ning)(ning)(ning)土(tu)各(ge)項指標(biao)對鋼(gang)(gang)筋(jin)(jin)腐(fu)蝕保(bao)護的(de)關(guan)鍵因(yin)素,例(li)如鋼(gang)(gang)筋(jin)(jin)混(hun)凝(ning)(ning)(ning)(ning)土(tu)保(bao)護層的(de)厚度、保(bao)護層混(hun)凝(ning)(ning)(ning)(ning)土(tu)的(de)堿度、保(bao)護層混(hun)凝(ning)(ning)(ning)(ning)土(tu)的(de)密實度與抗水、氣滲透(tou)能力、抗裂性能的(de)關(guan)聯性等。明確混(hun)凝(ning)(ning)(ning)(ning)土(tu)損傷(shang)機理,探索混(hun)凝(ning)(ning)(ning)(ning)土(tu)損傷(shang)防護技(ji)術,為鋼(gang)(gang)筋(jin)(jin)混(hun)凝(ning)(ning)(ning)(ning)土(tu)結構的(de)實施應用提供新的(de)技(ji)術支持。


4.3 帶肋鋼(gang)腐蝕(shi)的防護技術開發


針對不同苛刻工況環(huan)(huan)境(jing)(jing)腐(fu)(fu)(fu)蝕(shi)(shi)機理(li),研(yan)究帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)腐(fu)(fu)(fu)蝕(shi)(shi)修復技(ji)術(shu)。近(jin)年來發(fa)展的(de)緩蝕(shi)(shi)劑抑制帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)腐(fu)(fu)(fu)蝕(shi)(shi)技(ji)術(shu),通(tong)過(guo)利用緩蝕(shi)(shi)劑在金屬(shu)表面(mian)吸附形成(cheng)連(lian)續的(de)薄膜阻(zu)隔介(jie)(jie)質(zhi)腐(fu)(fu)(fu)蝕(shi)(shi)、改變金屬(shu)腐(fu)(fu)(fu)蝕(shi)(shi)電(dian)位阻(zu)止電(dian)化(hua)(hua)學腐(fu)(fu)(fu)蝕(shi)(shi)反應中(zhong)的(de)陽(yang)極(ji)金屬(shu)溶解(jie)及(ji)(ji)(ji)陰極(ji)H+放電(dian)析出(chu)氫氣等效能(neng)(neng),極(ji)大改善了(le)帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)腐(fu)(fu)(fu)蝕(shi)(shi)現象;電(dian)鍍、涂(tu)覆(fu)及(ji)(ji)(ji)沉積(ji)等表面(mian)涂(tu)層(ceng)(ceng)防(fang)護(hu)技(ji)術(shu),涂(tu)料通(tong)過(guo)涂(tu)層(ceng)(ceng)處理(li)技(ji)術(shu)在鋼(gang)(gang)(gang)材(cai)基體(ti)(ti)上形成(cheng)一層(ceng)(ceng)緊密(mi)結(jie)合的(de)固化(hua)(hua)膜,阻(zu)礙(ai)了(le)鋼(gang)(gang)(gang)基材(cai)與有害介(jie)(jie)質(zhi)因子的(de)接觸(chu),有效延(yan)長了(le)材(cai)料服役及(ji)(ji)(ji)儲放期限(xian);致密(mi)氧(yang)化(hua)(hua)鐵(tie)(tie)皮防(fang)腐(fu)(fu)(fu)蝕(shi)(shi)技(ji)術(shu)中(zhong)利用帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)在生(sheng)產(chan)過(guo)程(cheng)中(zhong)產(chan)生(sheng)鐵(tie)(tie)氧(yang)化(hua)(hua)層(ceng)(ceng)的(de)現象及(ji)(ji)(ji)鐵(tie)(tie)氧(yang)化(hua)(hua)層(ceng)(ceng)組分(fen)Fe2O3、Fe3O4、FeO的(de)物相性(xing)質(zhi),通(tong)過(guo)在鋼(gang)(gang)(gang)筋生(sheng)產(chan)線上調控(kong)帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)鐵(tie)(tie)皮氧(yang)化(hua)(hua)層(ceng)(ceng)的(de)物相組成(cheng)及(ji)(ji)(ji)厚(hou)度(du)比(bi)例,提升(sheng)材(cai)料自(zi)防(fang)腐(fu)(fu)(fu)、耐摩擦(ca)磨損性(xing)能(neng)(neng)。然(ran)而當前主要應用的(de)帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)防(fang)護(hu)技(ji)術(shu)已經不能(neng)(neng)滿足風沙、雨水、海洋環(huan)(huan)境(jing)(jing)、淡水環(huan)(huan)境(jing)(jing)及(ji)(ji)(ji)核環(huan)(huan)境(jing)(jing)等苛刻工況下服役時限(xian)需(xu)求。因而研(yan)究新(xin)型帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)防(fang)護(hu)技(ji)術(shu)、引導帶(dai)肋(lei)(lei)(lei)(lei)鋼(gang)(gang)(gang)腐(fu)(fu)(fu)蝕(shi)(shi)防(fang)護(hu)產(chan)業的(de)發(fa)展方向(xiang)已迫(po)在眉睫。


5 結語


隨著(zhu)社會的(de)(de)發展(zhan)(zhan),帶(dai)肋鋼所面(mian)臨的(de)(de)工況環境會愈加苛刻,未(wei)來材(cai)(cai)料(liao)(liao)的(de)(de)表面(mian)防(fang)護技(ji)術(shu)將朝著(zhu)適應復(fu)雜多變的(de)(de)多種(zhong)功能一體化(hua)、超長(chang)壽(shou)命的(de)(de)方(fang)向發展(zhan)(zhan)。這(zhe)需要(yao)(yao)基礎理論(lun)研(yan)究(jiu)(jiu)結合實際試驗分析,從材(cai)(cai)料(liao)(liao)的(de)(de)設計、生產(chan)制備(bei)以及服(fu)役壽(shou)命與失效(xiao)機制等(deng)方(fang)面(mian),明確材(cai)(cai)料(liao)(liao)的(de)(de)結構與效(xiao)能關系、表界面(mian)相互作用等(deng),從而達到(dao)延緩(huan)材(cai)(cai)料(liao)(liao)銹(xiu)(xiu)蝕期限、減緩(huan)材(cai)(cai)料(liao)(liao)的(de)(de)服(fu)役失效(xiao)行為。雖然當前防(fang)腐技(ji)術(shu)取(qu)得一些突破,但(dan)是(shi)在未(wei)來的(de)(de)發展(zhan)(zhan)中還需要(yao)(yao)研(yan)究(jiu)(jiu)防(fang)腐的(de)(de)新技(ji)術(shu)和新方(fang)法(fa),降(jiang)低銹(xiu)(xiu)蝕產(chan)生的(de)(de)損失。


參(can)考文獻

1 Su H Z. Study on the production process of HRB400 hot-rolled ribbed steel bar [D]. Chongqing: Chongqing University, 2007

1 蘇鶴洲. HRB400熱(re)軋(ya)帶肋鋼筋生(sheng)產工藝研(yan)究 [D]. 重慶: 重慶大學, 2007

2 Jin X, Song R B, Wang X Y, et al. Production process optimization of the hot rolling HRB400 rebar [J]. Henan Metall., 2013, 21(2): 45

2 靳熙, 宋仁伯, 王曉燕等. HRB400帶肋(lei)鋼筋生產工藝(yi)優(you)化 [J]. 河南冶金, 2013, 21(2): 45

3 Zhou F G, Wu S J. Production practice of Nb-bearing HRB400 hot rolling ribbed reinforced bar [J]. China Metall., 2005, (9): 33

3 周福(fu)功(gong), 吳紹杰. 含鈮HRB400熱軋帶(dai)肋鋼筋(jin)的生(sheng)產實踐 [J]. 中國冶金, 2005, (9): 33

4 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. NPJ Mater. Degrad., 2017, 1: 4

5 Wang J. Effect of concrete cover on corrosion mechanism and corrosion rate of steel bar [J]. Market Res. Inform., 2019, (4): 81

5 王建. 混凝土保護層對鋼(gang)筋腐(fu)蝕機(ji)理(li)及腐(fu)蝕速率的影響 [J]. 市場(chang)調查信息(xi) (綜合版), 2019, (4): 81

6 Li F M, Li Z J. Continuum damage mechanics based modeling of fiber reinforced concrete in tension [J]. Int. J. Solids Struct., 2001, 38: 777

7 Li Z, Jin Z Q, Shao S S, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Mater. Rev., 2018, 32: 4170

7 李哲, 金祖(zu)權, 邵爽(shuang)(shuang)爽(shuang)(shuang)等. 海洋環境下混凝土(tu)中鋼筋銹蝕機理及(ji)監測技(ji)術概(gai)述 [J]. 材料(liao)導(dao)報, 2018, 32: 4170

8 Al-Tikrite A, Hadi M N S. Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at different ratios under compression [J]. Constr. Build. Mater., 2017, 154: 1024

9 Jin W L, Zhou Z D, Mao J H, et al. Experimental study on magnetic field distribution in the fatigue process of corroded steel bars [J]. Ocean Eng., 2016, 34(5): 65

9 金偉良, 周崢棟, 毛江鴻等. 銹(xiu)蝕鋼(gang)筋在疲勞荷載作(zuo)用下(xia)壓磁場分布研究(jiu) [J]. 海洋工程, 2016, 34(5): 65

10 Li J. Effect of negative difference rate and corrosion of hot rolled ribbed steel bar on steel bar performance [A]. Academic Seminar on Railway and Construction Steel [C]. Huangshan, 2013: 311

10 李軍. 熱(re)軋帶肋(lei)鋼(gang)筋負差率及銹蝕(shi)對鋼(gang)筋性(xing)能的影響 [A]. 2013年鐵路和(he)建筑(zhu)用鋼(gang)學術研討會論文(wen)集 [C]. 黃山(shan), 2013: 311

11 Liu J T, Zheng M Q. Climatic characteristics of strong and very strong sandstorms in the middle and west parts of Inner Mongolia [J]. Plateau Meteor., 2003, 22: 51

11 劉景濤, 鄭明倩. 內蒙古(gu)中(zhong)西(xi)部強(qiang)和特強(qiang)沙塵暴(bao)的氣(qi)候學(xue)特征 [J]. 高原氣(qi)象, 2003, 22: 51

12 Cai C X, Jiang W M, Huang S H, et al. Chemical characteristic of two duststorms in the south-east coastal area of China and its possible origin [J]. Plateau Meteor., 2000, 19: 179

12 蔡晨霞, 蔣維楣, 黃(huang)世鴻等. 我國東南沿海兩次沙塵的化學特(te)征(zheng)及其源(yuan)地探(tan)討 [J]. 高原氣象, 2000, 19: 179

13 Ma Z H, Wang J. Progress on study of erosion of military equipments by sand and dust [J]. Corros. Sci. Prot. Technol., 2005, 17: 112

13 馬(ma)志宏, 汪浚. 砂塵環(huan)境(jing)中軍用(yong)裝備磨(mo)損腐蝕進展的(de)研究 [J]. 腐蝕科學與防(fang)護技術(shu), 2005, 17: 112

14 Hao Y H, Xing Y M, Zhao Y R, et al. Erosion mechanism and evaluation method of steel structure coating eroded under sandstorm environment [J]. J. Build. Mater., 2011, 14: 345

14 郝贠洪, 邢永(yong)明, 趙燕茹等. 風沙環境(jing)下鋼結構涂(tu)層侵蝕機理(li)及評(ping)價方法 [J]. 建(jian)筑材料學報, 2011, 14: 345

15 Hao Y H, Xing Y M, Feng Y J, et al. Research on anti-erosion mechanical properties of steel structure coating [J]. J. Build. Mater., 2013, 16: 1092

15 郝贠洪, 邢永明, 馮玉江等. 鋼結構表面涂層材料抗風沙沖蝕力學性能(neng)研(yan)究 [J]. 建(jian)筑材料學報, 2013, 16: 1092

16 Li L, Wei T C, Liu M W, et al. Research progress on erosion wear mechanism and anti-erosion coatings [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2019, 38(8): 70

16 李力, 魏(wei)天酬, 劉明(ming)維等(deng). 沖蝕磨損機理(li)及抗沖蝕涂層研究進展 [J]. 重慶(qing)交通大(da)學學報 (自然科學版), 2019, 38(8): 70

17 Yao M J, Li C F, He J B, et al. Progresses of anti-erosion coatings [J]. Mater. Rev., 2015, 29: 283

17 姚(yao)夢佳, 李(li)春福, 何俊波(bo)等(deng). 抗沖蝕磨損涂層的研究進展 [J]. 材(cai)料導(dao)報(bao): 納米與(yu)新材(cai)料專(zhuan)輯(ji), 2015, 29: 283

18 Ren Y. Erosion wear mechanism and evaluation of steel-structure coating in sandstorm [D]. Hohhot: Inner Mongolia University of Technology, 2014

18 任瑩. 鋼(gang)結構涂層受(shou)風沙環境沖蝕機(ji)理和損傷程(cheng)度評(ping)價研究 [D]. 呼(hu)和浩特: 內(nei)蒙古(gu)工業大學, 2014

19 Li S Z, Dong X L. Erosion Wear and Fretting Wear of Materials [M]. Beijing: Mechanical Industry Press, 1987

19 李詩卓, 董祥(xiang)林(lin). 材料的(de)沖蝕磨(mo)損(sun)(sun)與微動(dong)磨(mo)損(sun)(sun) [M]. 北京(jing): 機(ji)械工業出版社, 1987

20 Ballout Y, Mathis J A, Talia J E. Solid particle erosion mechanism in glass [J]. Wear, 1996, 196: 263

21 Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3: 87

22 Hao Y H, Ren Y, Duan G L, et al. Erosion mechanism and evaluation of steel structure coating eroded under sandstorm environment [J]. Tribology, 2014, 34: 357

22 郝(hao)贠洪, 任瑩, 段國龍等. 鋼(gang)結構表面涂層受風沙沖(chong)蝕機理和評價方法(fa) [J]. 摩擦學學報(bao), 2014, 34: 357

23 Yang S. The development of high-strength steel and the research of anti-corrosion resistance [D]. Xi'an: Xi'an University of Architecture and Technology, 2015

23 楊森(sen). 高強度鋼筋開發及抗銹蝕性研究 [D]. 西安(an): 西安(an)建筑科技大(da)學, 2015

24 Ding G Q, Zhang B. Research progress of atmospheric corrosion of steels in natural environment [J]. Equip. Environ. Eng., 2010, 7(3): 42

24 丁國清, 張波. 鋼(gang)在自然環(huan)境中的大氣腐(fu)蝕研(yan)究(jiu)進展 [J]. 裝備環(huan)境工程, 2010, 7(3): 42

25 Zhang Q C, Wu J S. Current status of R&D work on weathering steel [J]. Mater. Rev., 2000, 14(7): 12

25 張全(quan)成, 吳建生(sheng). 耐侯鋼的研究與發展(zhan)現狀 [J]. 材(cai)料導報, 2000, 14(7): 12

26 Liu Z. Discussion on atmospheric corrosion of weathering steel and carbon steel [J]. China High-Tech Enterprises, 2015, (7): 85

26 柳喆. 耐(nai)候(hou)鋼和碳(tan)鋼大氣腐蝕探討(tao) [J]. 中國(guo)高新技術企業, 2015, (7): 85

27 Zhang Q C, Wu J S, Yang X F, et al. Investigation of accelerated laboratory tests for weathering steel [J]. Mater. Prot., 2002, 35(3): 21

27 張全成, 吳建生(sheng), 楊曉芳等. 耐大氣腐蝕(shi)用(yong)鋼實(shi)驗室(shi)加(jia)速腐蝕(shi)的研究(jiu) [J]. 材(cai)料保護, 2002, 35(3): 21

28 Yang X F, Zheng W L. Analysis on the corrosion rust of weathering steel and carbon steel exposed to atmosphere for two years [J]. Corros. Prot., 2002, 23: 97

28 楊(yang)曉芳, 鄭文(wen)龍. 暴露2年的(de)碳鋼與耐候鋼表(biao)面銹層分析 [J]. 腐蝕(shi)與防護, 2002, 23: 97

29 Bavarian B, Ikder Y, Samimi B, et al. Comparison of the corrosion protection effectiveness of vapor corrosion inhibitors and dry air system [A]. Corrosion 2015 Conference [C]. Dallas, Texas, 2015: 10

30 Wang X J. Research on the behaviors and mechanism of the rust layer evolution of the early stages of atmospheric corrosion for metals [D]. Beijing: China Academy of Machinery Science and Technology, 2013

30 王(wang)秀(xiu)靜. 金屬材料大氣環境早期(qi)腐蝕(shi)行為及(ji)銹層演化機(ji)制研(yan)究 [D]. 北京(jing): 機(ji)械科學研(yan)究總院, 2013

31 Boden P J. Effect of concentration, velocity and temperature [A]. Corrosion [M]. 3rd Ed. New York: Elsevier, 1994

32 Liu J Z. A review of carbonation in reinforced concrete (1): Mechanism of carbonation and evaluative methods [J]. Concrete, 2005, (11): 10

32 柳俊(jun)哲. 混(hun)凝土碳化(hua)研究(jiu)與進展 (1)—碳化(hua)機(ji)理及碳化(hua)程度(du)評價(jia) [J]. 混(hun)凝土, 2005, (11): 10

33 Li G, Yuan Y S, Geng O. Influences of climate conditions to the concrete carbonization rates [J]. Concrete, 2004, (11): 49

33 李果(guo), 袁(yuan)迎曙(shu), 耿歐. 氣候條(tiao)件對混凝土碳化速度(du)的影響 [J]. 混凝土, 2004, (11): 49

34 Papadakis V G, Vayenas C G, Fardis M N. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Mater. J., 1991, 88: 363

35 Roberge P R. Handbook of Corrosion Engineering [M]. New York: McGraw-Hill, 2000

36 Smart N G, Gamboa-Aldeco M, Bockris J O M. Corrosion mechanisms of iron in concentrated acidic zinc chloride media [J]. Corros. Sci., 1993, 34: 759

37 Enke C G. Werkstoffe und korrosion [J]. Mater. Corros., 1972, 23: XLIII

38 Pacheco A M G, Teixeira M G I B, Ferreira M G S. Initial stages of chloride induced atmospheric corrosion of iron: an infrared spectroscopic study [J]. Br. Corros. J., 1990, 25: 57

39 Refait P, Benali O, Abdelmoula M, et al. Formation of 'ferric green rust' and/or ferrihydrite by fast oxidation of iron (II-III) hydroxychloride green rust [J]. Corros. Sci., 2003, 45: 2435

40 Legrand L, Sagon G, Lecomte S, et al. A Raman and infrared study of a new carbonate green rust obtained by electrochemical way [J]. Corros. Sci., 2001, 43: 1739

41 Refait P, Memet J B, Bon C, et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel [J]. Corros. Sci., 2003, 45: 833

42 Géhin A, Ruby C, Abdelmoula M, et al. Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation [J]. Solid State Sci., 2002, 4: 61

43 Ruby C, Géhin A, Abdelmoula M, et al. Coprecipitation of Fe(II) and Fe(III) cations in sulphated aqueous medium and formation of hydroxysulphate green rust [J]. Solid State Sci., 2003, 5: 1055

44 Hong N F. Corrosion in water environments and durability of concrete [J]. Corros. Prot., 2006, 27: 174

44 洪乃豐. 水環境(jing)腐(fu)蝕與混凝(ning)土的耐久性 [J]. 腐(fu)蝕與防護, 2006, 27: 174

45 Odokuma L O, Ugboma C J. Microbial corrosion of steel coupons in a freshwater habitat in the Niger Delta [J]. J. Ecol. Nat. Environ., 2012, 4: 42

46 Cao G, Gao C, Gan F X. Corrosion behaviors of carbon steel in fresh water [J]. Equip. Environ. Eng., 2006, 3(1): 46

46 曹(cao)剛, 高翠, 甘復興. 碳鋼在淡水環(huan)(huan)境(jing)中的腐(fu)蝕行為 [J]. 裝(zhuang)備(bei)環(huan)(huan)境(jing)工程, 2006, 3(1): 46

47 Zhang W Y. Corrosion and prevention of hydraulic steel gate in freshwater environment [J]. Surf. Technol., 2001, 30(4): 20

47 張文淵. 淡水(shui)環境中水(shui)工鋼(gang)閘門的腐蝕(shi)與防護 [J]. 表面技術, 2001, 30(4): 20

48 Yang Z K. Corrosion and its control of steel radiator [J]. Heat. Vent. Air Cond., 2001, 31(1): 21

48 楊志寬. 鋼制散(san)熱器腐(fu)蝕與控(kong)制 [J]. 暖通空調, 2001, 31(1): 21

49 Zhu Y X, Zhu X C, Ge Y, et al. Study on corrosion behavior of steel in flowing freshwater [J]. Hydro-Sci. Eng., 2002, (2): 7

49 朱(zhu)雅(ya)仙(xian), 朱(zhu)錫昶, 葛(ge)燕等. 流動(dong)淡水(shui)(shui)中鋼的腐蝕行為(wei)研究 [J]. 水(shui)(shui)利水(shui)(shui)運工(gong)程學報, 2002, (2): 7

50 Beech I B. Biocorrosion: Role of sulfate reducing bacteria [A]. Encyclopedia of Environmental Microbiology [M]. New York: John Wiley & Sons, Inc., 2003

51 Dinh H T, Kuever J, Mu?mann M, et al. Iron corrosion by novel anaerobic microorganisms [J]. Nature, 2004, 427: 829

52 Hamilton W A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis [J]. Biofouling, 2003, 19: 65

53 Lv H, Wei C F, Liang B F, et al. Analysis on causes of high corrosion rate in circulating water system of chemical fertilizer plant [J]. Petrochem. Technol. Appl., 2000, 18: 362

53 呂紅, 魏(wei)存發, 梁(liang)寶鋒等. 大(da)化(hua)肥循環水系(xi)統腐蝕率高的原因剖析 [J]. 石(shi)化(hua)技術(shu)與(yu)應用, 2000, 18: 362

54 Gibson G R. Physiology and ecology of the sulphate-reducing bacteria [J]. J. Appl. Bacteriol., 1990, 69: 769

55 Zhu R X, Na J Y, Guo S W, et al. Corrosion mechanism of sulfate-reducing bacteria [J]. J. Air Force Eng. Univ. (Nat. Sci. Ed.), 2000, 1(3): 10

55 朱絨霞, 那靜彥, 郭生武(wu)等. 硫酸鹽還原菌的腐蝕機理 [J]. 空軍工程大(da)學學報(bao) (自然科學版), 2000, 1(3): 10

56 Xu Q, Zhan S L, Zhang Q L, et al. Preparation and properties of nano-silicone marine reinforced concrete permeable protective coating [J]. Chin. J. Mater. Res., 2014, 28: 443

56 徐強, 詹(zhan)樹林, 張啟龍等(deng). 海洋工程鋼筋混凝土納(na)米硅滲透型防護劑的制備和性能 [J]. 材料研究學報, 2014, 28: 443

57 Wu Q L. Research on flexural RC components exposed to marine environments: durability and life prediction [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010

57 吳慶令. 海洋環境鋼筋混凝土受彎構(gou)件(jian)的(de)耐久(jiu)性與壽(shou)命預測 [D]. 南(nan)京: 南(nan)京航(hang)空航(hang)天大學, 2010

58 Tian H W, Li W H, Zong C Z, et al. Corrosion mechanism and research progress of anti-corrosion coatings for reinforced concrete used in marine environment [J]. Paint Coat. Ind., 2008, 38(8): 62

58 田(tian)惠文(wen), 李偉華, 宗(zong)成中等. 海(hai)洋環境鋼筋(jin)混(hun)凝土腐蝕機理和防(fang)腐涂(tu)料研(yan)究進展(zhan) [J]. 涂(tu)料工業, 2008, 38(8): 62

59 Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment [J]. Corros. Rev., 2002, 20: 469

60 Zhu H W, Yu H F, Ma H Y. Electrochemical study on effect of rust inhibitors on corrosion of reinforcing bar in concrete in marine environment [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2020, 50: 109

60 朱海(hai)(hai)威(wei), 余紅發(fa), 麻海(hai)(hai)燕. 阻銹劑(ji)對(dui)海(hai)(hai)洋環(huan)境下混凝(ning)土(tu)中鋼筋腐蝕影響的電化學(xue)研(yan)究 [J]. 東南(nan)大學(xue)學(xue)報 (自然科學(xue)版(ban)), 2020, 50: 109

61 Yu Z T, Han D J. Method of carbonization reliability assessment for existing reinforced concrete bridges [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2004, 32(2): 50

61 禹(yu)智濤, 韓大(da)建. 既有鋼筋混凝(ning)土橋梁碳化可靠度評估方法 [J]. 華南理工大(da)學學報 (自然科學版), 2004, 32(2): 50

62 Song L Y. Study on chloride corrosion durability of reinforced concrete marine structures [D]. Dalian: Dalian University of Technology, 2009

62 宋立元. 海洋鋼筋混凝土結構(gou)氯離子腐(fu)蝕耐久性研究(jiu) [D]. 大連: 大連理(li)工大學, 2009

63 Liang Y N, Yuan Y S. Test study on bond behavior of corroded concrete and steel bars [J]. Concrete, 2008, (2): 20

63 梁詠寧, 袁迎曙. 受硫酸鹽腐蝕混(hun)凝(ning)土與鋼(gang)筋黏結性(xing)能的研究 [J]. 混(hun)凝(ning)土, 2008, (2): 20

64 Artigas A, Monsalve A, Sipos K, et al. Development of accelerated wet-dry cycle corrosion test in marine environment for weathering steels [J]. Corros. Eng. Sci. Technol., 2015, 50: 628

65 Melchers R E, Li C Q. Reinforcement corrosion in concrete exposed to the North Sea for more than 60 years [J]. Corrosion, 2009, 65: 554

66 Han J Y, Dai C, Gao Z H, et al. Microorganism corrosion of concrete [J]. Mater. Rev., 2002, 16(10): 42

66 韓靜(jing)云, 戴超(chao), 郜志海等. 混凝(ning)土的微生物腐蝕 [J]. 材料導報, 2002, 16(10): 42

67 Li J C M. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 1996

68 Miller F M, Tang F J. The distribution of sulfur in present-day clinkers of variable sulfur content [J]. Cem. Concr. Res., 1996, 26: 1821

69 Ormellese M, Berra M, Bolzoni F, et al. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures [J]. Cem. Concr. Res., 2006, 36: 536

70 Hussain S E, Al-Gahtani A S, Rasheeduzzafar. Chloride threshold for corrosion of reinforcement in concrete [J]. ACI Mater. J., 1996, 93: 534

71 Pavan I, Reddy K, Pai V. Repair and rehabilitation of concrete pavements [J]. Int. J. Eng. Res. Dev., 2015, 11: 2278

72 Mohammed T U, Otsuki N, Hamada H. Corrosion of steel bars in cracked concrete under marine environment [J]. J. Mater. Civil Eng., 2003, 15: 460

73 Skoglund P, Silfwerbrand J, Holmgren J, et al. Chloride redistribution and reinforcement corrosion in the interfacial region between substrate and repair concrete-a laboratory study [J]. Mater. Struct., 2008, 41: 1001

74 Quraishi M A, Nayak D K, Kumar R, et al. Corrosion of reinforced steel in concrete and its control: An overview [J]. J. Steel Struct. Constr., 2017, 2: 124

75 Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials [M]. 4th Ed. New York: McGraw-Hill, 2014

76 Isgor O B, Razaqpur A G. Modelling steel corrosion in concrete structures [J]. Mater. Struct., 2006, 39: 291

77 Raupach M. Corrosion of steel reinforcement in concrete [J]. Mater. Corros., 2009, 60: 77

78 He K, Xu Y F, Tan Y, et al. Review of corrosion behavior of typical nuclear power materials [J]. Shandong Chem. Ind., 2018, 47(22): 61

78 何寬, 徐蕓菲, 檀玉等(deng). 核(he)電(dian)典型材料(liao)的腐蝕行(xing)為研究綜述 [J]. 山(shan)東化工, 2018, 47(22): 61

79 Liu X, Zhao J C, Wang G G, et al. Failure analysis of pipelines and welding joints in nuclear power plant [J]. Fail. Anal. Prev., 2013, 8: 300

79 劉(liu)肖, 趙建倉, 王淦剛等. 核電(dian)廠(chang)管(guan)道及焊接接頭失(shi)效案例綜(zong)述 [J]. 失(shi)效分析(xi)與預(yu)防, 2013, 8: 300

80 Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59: 931

81 Andresen P L, Ford F P. Prediction of stress corrosion cracking (SCC) in nuclear power systems [A]. Stress Corrosion Cracking [M]. Cambridge: Woodhead Publishing, 2011: 651

82 Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182 [J]. Corros. Sci., 2013, 67: 91

83 Wang Y. Study on surface contamination and surface modification of nuclear grade materials [D]. Dalian: Dalian University of Technology, 2010

83 王永. 核級材料的(de)表(biao)面污染及表(biao)面改性研究(jiu) [D]. 大(da)連: 大(da)連理工大(da)學, 2010

84 Deng P. Irradiation assisted corrosion and stress corrosion of nuclear-grade 304 stainless steel in high temperature and high pressure water [D]. Hefei: University of Science and Technology of China, 2018

84 鄧平(ping). 核級304不銹(xiu)鋼輻照(zhao)促進高溫高壓水(shui)環境(jing)腐蝕(shi)與應力腐蝕(shi)研究(jiu) [D]. 合(he)肥: 中國科學(xue)技(ji)術大學(xue), 2018

85 Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement [J]. Wear, 2005, 258: 641

86 Barker K C, Ball A. Synergistic abrasive—corrosive wear of chromium containing steels [J]. Br. Corros. J., 1989, 24: 222

87 Ilevbare G O, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J]. Corros. Sci., 2001, 43: 485

88 Zheng Z B, Zheng Y G, Sun W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution [J]. Corros. Sci., 2013, 76: 337

89 Wang G H. Influence of the sigma phase precipitation on the microstructure and properties in duplex stainless steel [J]. China Metall., 2011, 21(6): 15

89 王國(guo)華. σ相(xiang)(xiang)的析出對雙相(xiang)(xiang)不銹鋼組(zu)織性(xing)能的影響 [J]. 中(zhong)國(guo)冶金(jin), 2011, 21(6): 15

90 Wu X Q, Jing H M, Zheng Y G, et al. Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion [J]. Corros. Sci., 2004, 46: 1013

91 Bertrand N, Desgranges C, Poquillon D, et al. Iron oxidation at low temperature (260~500 ℃) in air and the effect of water vapor [J]. Oxid. Met., 2010, 73: 139

92 Zhang B, Cao J, Guo Z, et al. Effect of cooling bed temperature on the corrosion resistance of surface oxide scale of rebar [J]. J. Anhui Univ. Technol. (Nat. Sci.), 2018, 35: 301

92 張波, 曹(cao)杰, 郭湛等(deng). 上冷床(chuang)溫度(du)對螺紋(wen)鋼筋表面氧(yang)化鐵皮抗銹(xiu)蝕(shi)性(xing)能的影響 [J]. 安徽工業大學(xue)學(xue)報 (自然科學(xue)版), 2018, 35: 301

93 Chen R Y. Mechanism of iron oxide scale reduction in 5%H2-N2 gas at 650~900 ℃ [J]. Oxid. Met., 2017, 88: 687

94 Chen R Y, Yuen W Y D. Longer term oxidation kinetics of low carbon, low silicon steel in 17H2O-N2 at 900 ℃ [J]. Oxid. Met., 2016, 85: 489

95 Huang B H, Xu X L, Liu J, et al. A method for using ionic liquids as corrosion inhibitors for carbon steel [P]. Chin. Pat., 201010019346.8, 2010

95 黃寶華, 徐效陵(ling), 劉軍(jun)等. 一種(zhong)離子液(ye)體用作碳鋼緩蝕劑的方(fang)法 [P]. 中國(guo)專利, 201010019346.8, 2010)

免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。