无码精品人妻一区二区三区影院_国产乱子经典视频在线观看_亚洲国产精品sss在线观看av_国产国语在线播放视频

NaCl鹽霧環境下Ti60合金的中溫腐蝕行為

2021-09-13 09:03:22 hualin

摘要(yao)

利用(yong)增重測試、掃描電鏡 (SEM)、X射線衍(yan)射儀(yi) (XRD) 和電子探針 (EPMA) 等分析技術(shu),從(cong)氧(yang)(yang)化(hua)動力學、氧(yang)(yang)化(hua)膜(mo)相組成(cheng)和微觀結構方面,研究(jiu)了Ti60合(he)金在(zai)600 ℃下NaCl鹽霧(wu)環(huan)(huan)(huan)境(jing)中(zhong)的腐(fu)蝕(shi)行為(wei)(wei)。結果表明,Ti60合(he)金在(zai)中(zhong)溫NaCl鹽霧(wu)環(huan)(huan)(huan)境(jing)中(zhong)腐(fu)蝕(shi)100 h后,其(qi)腐(fu)蝕(shi)速率遠遠低于(yu)在(zai)固態NaCl+H2O+O2環(huan)(huan)(huan)境(jing)中(zhong)的。在(zai)NaCl鹽霧(wu)環(huan)(huan)(huan)境(jing)中(zhong)表面形成(cheng)雙(shuang)層(ceng)腐(fu)蝕(shi)產(chan)物,外層(ceng)相對致密,以Na2TiO3和TiO2為(wei)(wei)主;內(nei)層(ceng)為(wei)(wei)顆(ke)粒狀(zhuang),以TiO和Ti2O為(wei)(wei)主。NaCl鹽霧(wu)環(huan)(huan)(huan)境(jing)是富(fu)(fu)氧(yang)(yang)、富(fu)(fu)水蒸汽環(huan)(huan)(huan)境(jing),更傾向于(yu)形成(cheng)致密的TiO2,減緩材料(liao)的腐(fu)蝕(shi)。此外,Cl在(zai)氧(yang)(yang)化(hua)膜(mo)內(nei)層(ceng)富(fu)(fu)集,并以“活性氧(yang)(yang)化(hua)”機制加速Ti60合(he)金的腐(fu)蝕(shi)。


關鍵詞: Ti60合金 ; NaCl鹽霧 ; 固態(tai)NaCl+H2O+O2沉(chen)積鹽 ; 中溫腐蝕


服役于海洋環境下的(de)飛機壓氣機葉片材料遭受中溫(wen)NaCl和水(shui)蒸(zheng)汽協同(tong)作(zuo)用引發嚴重的(de)腐(fu)蝕(shi)行為。隨(sui)著我國海洋事(shi)業大力發展(zhan),該類腐(fu)蝕(shi)問題越來(lai)越突出,亟待解決。針對純鐵、純鉻(ge)、Fe-Cr合金(jin)(jin),Ni基高溫(wen)合金(jin)(jin)等在中溫(wen)固(gu)態NaCl+水(shui)蒸(zheng)汽協同(tong)環境中的(de)腐(fu)蝕(shi)行為研究表明,NaCl顯著破壞具有(you)保護作(zuo)用的(de)Cr2O3氧化膜,與其發生化學(xue)(xue)-電化學(xue)(xue)交(jiao)互(hu)腐(fu)蝕(shi)反應,形成疏松多(duo)孔無保護性的(de)腐(fu)蝕(shi)產物,加速材料的(de)腐(fu)蝕(shi)[1-5]。


過去研究(jiu)中(zhong)固(gu)(gu)(gu)態(tai)(tai)鹽(yan)沉(chen)(chen)(chen)積(ji)是一種(zhong)過量的(de)(de)腐(fu)(fu)蝕(shi)加速形(xing)式。目前飛機壓氣機經(jing)常被(bei)沖洗,很(hen)(hen)難有(you)(you)大(da)量固(gu)(gu)(gu)態(tai)(tai)鹽(yan)沉(chen)(chen)(chen)積(ji)在(zai)(zai)金屬(shu)材(cai)料(liao)表面。實(shi)際上,金屬(shu)材(cai)料(liao)遭受的(de)(de)是中(zhong)溫下NaCl小顆粒和(he)水(shui)蒸汽所形(xing)成(cheng)的(de)(de)鹽(yan)霧(wu)環境(jing)(jing)下的(de)(de)腐(fu)(fu)蝕(shi)。這種(zhong)環境(jing)(jing)與固(gu)(gu)(gu)態(tai)(tai)沉(chen)(chen)(chen)積(ji)鹽(yan)+水(shui)蒸汽環境(jing)(jing)有(you)(you)很(hen)(hen)大(da)區別,固(gu)(gu)(gu)態(tai)(tai)沉(chen)(chen)(chen)積(ji)鹽(yan)膜較厚,內(nei)部低(di)氧,水(shui)蒸汽需擴散進入,但(dan)在(zai)(zai)鹽(yan)霧(wu)環境(jing)(jing)中(zhong)鹽(yan)粒細小、高氧、高水(shui)汽,因此金屬(shu)的(de)(de)腐(fu)(fu)蝕(shi)行為有(you)(you)很(hen)(hen)大(da)變化。曹敏等[6]研究(jiu)了600 ℃下Fe-20Cr合金在(zai)(zai)NaCl鹽(yan)霧(wu)中(zhong)的(de)(de)腐(fu)(fu)蝕(shi)行為,發現(xian)與固(gu)(gu)(gu)態(tai)(tai)鹽(yan)+水(shui)蒸汽環境(jing)(jing)相比,Fe-20Cr合金增重變化不(bu)大(da),但(dan)腐(fu)(fu)蝕(shi)產物的(de)(de)組成(cheng)和(he)結(jie)構完全(quan)不(bu)同(tong)。這說(shuo)明固(gu)(gu)(gu)態(tai)(tai)鹽(yan)環境(jing)(jing)與鹽(yan)霧(wu)環境(jing)(jing)腐(fu)(fu)蝕(shi)機理不(bu)同(tong)。


鈦(tai)合(he)(he)金(jin)因其比強度高(gao)、力(li)學(xue)性(xing)能好被廣泛應用作新型(xing)發(fa)動機材料(liao)[7-10]。文(wen)獻[10-13]和Ciszak等[14-16]研究(jiu)了(le)鈦(tai)合(he)(he)金(jin)在中(zhong)溫固態(tai)鹽(yan)(yan)+水蒸汽環境(jing)下的腐(fu)(fu)蝕行為(wei)(wei),發(fa)現(xian)鈦(tai)合(he)(he)金(jin)對(dui)該環境(jing)敏感(gan),加速腐(fu)(fu)蝕。其中(zhong),Ti氧化(hua)物(wu)與(yu)NaCl+H2O發(fa)生化(hua)學(xue)反應形成Na4Ti5O12及(ji)揮發(fa)性(xing)TiCl4/HCl等,反應機理(li)與(yu)Cr氧化(hua)物(wu)非常(chang)相近。尤其是Cl在其中(zhong)的催(cui)化(hua)機理(li),是加速腐(fu)(fu)蝕的本質原因。但是,目前尚(shang)未開展Ti合(he)(he)金(jin)在中(zhong)溫鹽(yan)(yan)霧環境(jing)下的腐(fu)(fu)蝕行為(wei)(wei)研究(jiu),更(geng)接近實際服役(yi)情況下的鈦(tai)合(he)(he)金(jin)腐(fu)(fu)蝕機理(li)尚(shang)不(bu)明確。因此(ci),本文(wen)主要研究(jiu)了(le)Ti60合(he)(he)金(jin)在600 ℃下NaCl鹽(yan)(yan)霧環境(jing) (30.8%H2O) 中(zhong)的腐(fu)(fu)蝕行為(wei)(wei)。通過與(yu)相同溫度下無鹽(yan)(yan) (H2O+O2) 和固態(tai)鹽(yan)(yan) (NaCl+H2O+O2) 環境(jing)中(zhong)的腐(fu)(fu)蝕行為(wei)(wei)對(dui)比,詳細分(fen)析材料(liao)的腐(fu)(fu)蝕動力(li)學(xue)規律以(yi)及(ji)腐(fu)(fu)蝕產物(wu)形貌、成分(fen)與(yu)結構(gou),并由此(ci)深(shen)入討(tao)論Ti60合(he)(he)金(jin)在600 ℃下NaCl鹽(yan)(yan)霧環境(jing)中(zhong)的腐(fu)(fu)蝕機理(li)。


1 實驗方法


實(shi)驗所用材料為(wei)中國科學院金屬研究所鈦合金部研制的(de)Ti60合金,其(qi)名義成(cheng)(cheng)分 (質量分數,%) 為(wei):Al 5.7,Sn 3.7,Zr 3.5,Ta 1.0,Mo 0.4,Si 0.4,C 0.05,余量Ti。Ti60合金由(you)α相 (Ti-Al-Sn-Zr) 和β相 (Ta、Nb和Mo) 組成(cheng)(cheng),其(qi)金相如圖1所示。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F001.jpg

圖1   Ti60合金(jin)(jin)的金(jin)(jin)相組織


使(shi)用(yong)線切割將Ti60合金切至(zhi)尺寸為(wei)15 mm×10 mm×2 mm的片(pian)狀樣品(pin)。用(yong)SiC水(shui)砂紙逐級(ji)打磨至(zhi)800#,然后對樣品(pin)進行倒邊/角(jiao)處理。依次用(yong)丙酮,酒(jiu)精(jing)超聲(sheng)清洗,冷風(feng)吹干,放置于干燥(zao)器中(zhong)待用(yong)。


本實驗包括3種腐(fu)蝕環(huan)境(jing)(jing):(1) NaCl鹽(yan)霧(wu)環(huan)境(jing)(jing)模擬裝(zhuang)(zhuang)置(zhi),由加(jia)熱系統、通(tong)氣(qi)裝(zhuang)(zhuang)置(zhi)、儲(chu)水(shui)(shui)裝(zhuang)(zhuang)置(zhi)和超聲(sheng)霧(wu)化器共(gong)同(tong)組成,具體(ti)實驗參數見(jian)文獻[6]。霧(wu)化溫度為(wei)70 ℃,氧氣(qi)流量(liang)(liang)(liang)(liang)為(wei)310 mL/min,水(shui)(shui)蒸(zheng)汽(qi)含量(liang)(liang)(liang)(liang)約為(wei)30.8%。經檢測,100 h連續噴射(she)后NaCl表(biao)面(mian)沉積量(liang)(liang)(liang)(liang)約為(wei)74.4 mg/cm2。(2) H2O+O2[11],樣(yang)品(pin)直(zhi)接放入含水(shui)(shui)蒸(zheng)汽(qi)的(de)(de)(de)O2氣(qi)氛(fen)腐(fu)蝕 (水(shui)(shui)蒸(zheng)汽(qi)和載氣(qi)O2流量(liang)(liang)(liang)(liang)同(tong)上)。(3) 固(gu)態NaCl鹽(yan)膜+H2O+O2環(huan)境(jing)(jing)[11],在預熱的(de)(de)(de)樣(yang)品(pin)上反(fan)復刷涂(tu)過飽和NaCl溶液(ye),固(gu)態NaCl的(de)(de)(de)沉積量(liang)(liang)(liang)(liang)約為(wei)4±0.2 mg/cm2,然后放入含水(shui)(shui)蒸(zheng)汽(qi)的(de)(de)(de)O2氣(qi)氛(fen)腐(fu)蝕 (水(shui)(shui)蒸(zheng)汽(qi)和載氣(qi)O2流量(liang)(liang)(liang)(liang)同(tong)上)。


使用Sartorius型(xing)(xing)(xing)(xing)電(dian)(dian)(dian)子天平 (精度(du)為10-5 g) 對樣品進行(xing)稱重。利用InspectF50 型(xing)(xing)(xing)(xing)掃(sao)描(miao)電(dian)(dian)(dian)鏡 (SEM) 和(he)Finder1000型(xing)(xing)(xing)(xing)能譜儀 (EDS) 進行(xing)腐蝕產(chan)物(wu)形貌及(ji)成(cheng)分(fen)分(fen)析(xi)。通過X'Pert PRO型(xing)(xing)(xing)(xing) X射線衍射儀 (XRD) 進行(xing)腐蝕產(chan)物(wu)相成(cheng)分(fen)分(fen)析(xi)。并結合EPMA-1610型(xing)(xing)(xing)(xing)電(dian)(dian)(dian)子探針(zhen) (EPMA) 對腐蝕產(chan)物(wu)截面進行(xing)元(yuan)素分(fen)布分(fen)析(xi)。


2 實驗(yan)結(jie)果


2.1 腐蝕動力學


圖2為(wei)Ti60合(he)(he)(he)金(jin)在(zai)600 ℃下(xia)H2O+O2,固(gu)態(tai)(tai)NaCl+H2O+O2和NaCl鹽霧(wu)3種(zhong)環(huan)境(jing)(jing)(jing)中(zhong)(zhong)(zhong)腐(fu)蝕(shi)(shi)(shi)(shi)100 h的(de)動力學曲線。結果表明(ming),在(zai)H2O+O2環(huan)境(jing)(jing)(jing)腐(fu)蝕(shi)(shi)(shi)(shi)增(zeng)重不(bu)(bu)明(ming)顯(xian);在(zai)含有(you)NaCl的(de)兩(liang)種(zhong)環(huan)境(jing)(jing)(jing)下(xia)Ti60合(he)(he)(he)金(jin)腐(fu)蝕(shi)(shi)(shi)(shi)增(zeng)重明(ming)顯(xian)增(zeng)強,說明(ming)NaCl極大(da)地(di)加速(su)了Ti60合(he)(he)(he)金(jin)的(de)腐(fu)蝕(shi)(shi)(shi)(shi)。在(zai)NaCl鹽霧(wu)環(huan)境(jing)(jing)(jing)中(zhong)(zhong)(zhong)腐(fu)蝕(shi)(shi)(shi)(shi)100 h后(hou),樣品(pin)(pin)增(zeng)重約為(wei)1.8 mg/cm2;而在(zai)固(gu)態(tai)(tai)NaCl+H2O+O2中(zhong)(zhong)(zhong)腐(fu)蝕(shi)(shi)(shi)(shi)100 h后(hou),樣品(pin)(pin)增(zeng)重約為(wei)10.57 mg/cm2,接(jie)近于NaCl鹽霧(wu)下(xia)腐(fu)蝕(shi)(shi)(shi)(shi)增(zeng)重值的(de)6倍。可見,Ti60合(he)(he)(he)金(jin)在(zai)鹽霧(wu)環(huan)境(jing)(jing)(jing)下(xia)的(de)腐(fu)蝕(shi)(shi)(shi)(shi)速(su)度(du)低于在(zai)固(gu)態(tai)(tai)NaCl+H2O+O2環(huan)境(jing)(jing)(jing)中(zhong)(zhong)(zhong)的(de),這與Fe-20Cr合(he)(he)(he)金(jin)的(de)實驗結果顯(xian)著不(bu)(bu)同。Fe-20Cr合(he)(he)(he)金(jin)在(zai)固(gu)態(tai)(tai)NaCl+H2O+O2和NaCl鹽霧(wu)環(huan)境(jing)(jing)(jing)下(xia)腐(fu)蝕(shi)(shi)(shi)(shi)20 h后(hou)的(de)腐(fu)蝕(shi)(shi)(shi)(shi)增(zeng)重值相差不(bu)(bu)大(da)。這說明(ming)兩(liang)種(zhong)材料在(zai)鹽霧(wu)環(huan)境(jing)(jing)(jing)下(xia)的(de)腐(fu)蝕(shi)(shi)(shi)(shi)機理有(you)區(qu)別。另外,經計算,連續沉積100 h后(hou)NaCl鹽霧(wu)在(zai)Ti60合(he)(he)(he)金(jin)表面鹽沉積量(liang) (74.4 mg/cm2) 顯(xian)著大(da)于固(gu)態(tai)(tai)NaCl+H2O+O2中(zhong)(zhong)(zhong)鹽沉積量(liang) (4 mg/cm2),但腐(fu)蝕(shi)(shi)(shi)(shi)速(su)度(du)卻遠低于在(zai)固(gu)態(tai)(tai)NaCl環(huan)境(jing)(jing)(jing)中(zhong)(zhong)(zhong)的(de),這說明(ming)Ti合(he)(he)(he)金(jin)的(de)腐(fu)蝕(shi)(shi)(shi)(shi)行為(wei)與NaCl的(de)沉積形式有(you)很大(da)關系。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F002.jpg

圖2   Ti60合金在(zai)600 ℃下H2O+O2,NaCl鹽霧和(he)固態NaCl+H2O+O2 環境中腐(fu)蝕100 h的動力學曲線(xian)[17]


2.2 腐蝕產物形貌及成分分析


圖(tu)3為(wei)Ti60合金在(zai)3種環(huan)(huan)境(jing)中腐(fu)(fu)蝕(shi)(shi)100 h后(hou)(hou)的(de)(de)表面(mian)形貌。結果表明,在(zai)H2O+O2環(huan)(huan)境(jing)中 (圖(tu)3a) 腐(fu)(fu)蝕(shi)(shi)100 h后(hou)(hou),Ti60合金腐(fu)(fu)蝕(shi)(shi)產物膜(mo)很(hen)薄,樣品表面(mian)腐(fu)(fu)蝕(shi)(shi)前打磨的(de)(de)劃痕清(qing)晰(xi)可見。在(zai)NaCl鹽霧環(huan)(huan)境(jing)中 (圖(tu)3b) 腐(fu)(fu)蝕(shi)(shi)100 h后(hou)(hou),樣品表面(mian)被致密的(de)(de)、均勻的(de)(de)腐(fu)(fu)蝕(shi)(shi)產物覆蓋,放大圖(tu)顯示腐(fu)(fu)蝕(shi)(shi)產物呈針狀。在(zai)固態NaCl+H2O+O2環(huan)(huan)境(jing)中 (圖(tu)3c) 腐(fu)(fu)蝕(shi)(shi)100 h后(hou)(hou),腐(fu)(fu)蝕(shi)(shi)產物膜(mo)很(hen)厚,腐(fu)(fu)蝕(shi)(shi)產物呈團(tuan)簇(cu)狀,且含有大量孔洞。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F003.jpg

圖3   Ti60合金(jin)在600 ℃下H2O+O2[11],NaCl鹽霧和(he)固態NaCl+H2O+O2[13]環境中腐蝕100 h后的表面形貌


圖(tu)4為(wei)(wei)Ti60合金(jin)在(zai)3種環(huan)境(jing)(jing)中腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)100 h后樣品(pin)的(de)(de)截(jie)面(mian)形貌。結(jie)果(guo)(guo)表明,在(zai)H2O+O2環(huan)境(jing)(jing)下腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)100 h后,樣品(pin)表面(mian)形成(cheng)的(de)(de)氧化(hua)膜(mo) (黑色(se)(se)) 特別(bie)薄,這與增重及表面(mian)形貌觀察結(jie)果(guo)(guo)相吻合。在(zai)NaCl鹽霧環(huan)境(jing)(jing)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)100 h后,樣品(pin)表面(mian)形成(cheng)的(de)(de)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)(chan)物(wu)(wu)(wu)厚(hou)(hou)度大約(yue)(yue)為(wei)(wei)22 μm,產(chan)(chan)物(wu)(wu)(wu)膜(mo)主要分為(wei)(wei)兩層結(jie)構,外層相對致密(mi),厚(hou)(hou)度約(yue)(yue)為(wei)(wei)10 μm;內層為(wei)(wei)亮白色(se)(se)顆粒狀(zhuang)氧化(hua)物(wu)(wu)(wu)和灰色(se)(se)連續(xu)氧化(hua)物(wu)(wu)(wu)的(de)(de)混合產(chan)(chan)物(wu)(wu)(wu),整個內層厚(hou)(hou)度約(yue)(yue)為(wei)(wei)12 μm。從4c可以看(kan)出,靠近基體的(de)(de)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)(chan)物(wu)(wu)(wu)為(wei)(wei)灰色(se)(se)連續(xu)氧化(hua)物(wu)(wu)(wu),并且沿β相優先腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)。固態NaCl+H2O+O2環(huan)境(jing)(jing)下形成(cheng)的(de)(de)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)(chan)物(wu)(wu)(wu)明顯變厚(hou)(hou) (圖(tu)4d),主要也是由(you)不同的(de)(de)內外兩層腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)(chan)物(wu)(wu)(wu)構成(cheng)。外腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)層厚(hou)(hou)度為(wei)(wei)80~120 μm,除表層致密(mi)外,內部含有(you)大量疏松孔洞(dong);內腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)層的(de)(de)厚(hou)(hou)度約(yue)(yue)為(wei)(wei)80 μm,呈片(pian)層狀(zhuang)形貌,未反應的(de)(de)β相殘留在(zai)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)(chan)物(wu)(wu)(wu)中。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F004.png

圖4   Ti60合金在(zai)600 ℃下H2O+O2[18],NaCl鹽霧(wu)和固(gu)態NaCl+H2O+O2[13]環境中(zhong)腐(fu)蝕(shi)100 h后的截面形貌


圖5為Ti60合(he)金(jin)在(zai)(zai)600 ℃下NaCl鹽霧(wu)和(he)(he)固態NaCl+H2O+O2兩種(zhong)環(huan)境(jing)中(zhong)腐(fu)蝕100 h后(hou)(hou)的XRD分析。結果表明,在(zai)(zai)NaCl鹽霧(wu)環(huan)境(jing)下腐(fu)蝕100 h后(hou)(hou),腐(fu)蝕產物主(zhu)要成(cheng)分為Ti2O,TiO,TiO2和(he)(he)Na2TiO3 (圖5a)。在(zai)(zai)固態NaCl+H2O+O2環(huan)境(jing)腐(fu)蝕100 h后(hou)(hou),腐(fu)蝕產物主(zhu)要成(cheng)分為Ti2O,TiO2和(he)(he)Na4Ti5O12,同(tong)時表面含有殘余NaCl (圖5b)。可見,Ti60合(he)金(jin)在(zai)(zai)上述兩種(zhong)環(huan)境(jing)中(zhong)的腐(fu)蝕產物成(cheng)分明顯不同(tong)。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F005.jpg

圖5   600 ℃ Ti60合金在(zai)NaCl鹽霧和固態NaCl+H2O+O2[13]環境中腐蝕(shi)100 h后腐蝕(shi)產物的(de)XRD相分(fen)析


圖(tu)(tu)6為Ti60合(he)金在600 ℃下(xia)NaCl鹽霧(wu)(wu)(wu)和固態NaCl+H2O+O2兩種環境(jing)(jing)中(zhong)(zhong)腐蝕(shi)(shi)100 h的(de)腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)截面EPMA元素面分布結(jie)(jie)(jie)果。結(jie)(jie)(jie)果表明,在NaCl鹽霧(wu)(wu)(wu)環境(jing)(jing)腐蝕(shi)(shi)100 h后 (圖(tu)(tu)6a),Na在最(zui)外(wai)層(ceng)腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)出現富(fu)集(ji),結(jie)(jie)(jie)合(he)XRD結(jie)(jie)(jie)果分析其(qi)成(cheng)分主(zhu)要為Na2TiO3;中(zhong)(zhong)間亮白(bai)色腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)層(ceng)為Al-Zr復合(he)氧化(hua)物(wu)(wu)(wu);Sn在內層(ceng)腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)富(fu)集(ji),Cl主(zhu)要位于內層(ceng)腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)靠近基體(ti)的(de)位置(zhi)。在固態NaCl+H2O+O2環境(jing)(jing)腐蝕(shi)(shi)100 h后 (圖(tu)(tu)6b),與(yu)鹽霧(wu)(wu)(wu)環境(jing)(jing)不同,Na在最(zui)外(wai)層(ceng)和內層(ceng)富(fu)集(ji),結(jie)(jie)(jie)合(he)XRD結(jie)(jie)(jie)果可知其(qi)化(hua)學成(cheng)分應該是Na4Ti5O12;Cl幾乎(hu)分布在整個腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)中(zhong)(zhong),但內層(ceng)略多;與(yu)鹽霧(wu)(wu)(wu)環境(jing)(jing)相同的(de)是,外(wai)層(ceng)中(zhong)(zhong)團簇(cu)狀亮白(bai)色腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)為Al-Zr復合(he)氧化(hua)物(wu)(wu)(wu),Sn在內層(ceng)腐蝕(shi)(shi)產(chan)物(wu)(wu)(wu)中(zhong)(zhong)富(fu)集(ji)。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F006.png

圖(tu)6   Ti60合(he)金在NaCl鹽霧(wu)和(he)固態NaCl+H2O+O2[13]環境中腐蝕100 h后腐蝕產物(wu)膜截面(mian)的元素面(mian)分(fen)布(bu)


3 結果討論


實驗結(jie)果(guo)(guo)表明,雖然連續鹽(yan)霧環境下(xia)暴露100 h后(hou)NaCl沉(chen)(chen)積量顯著高于(yu)固態(tai)NaCl+H2O+O2初始的(de)沉(chen)(chen)積量,但Ti60合金(jin)的(de)腐蝕增(zeng)重(zhong)結(jie)果(guo)(guo)卻相反,在鹽(yan)霧環境下(xia)的(de)腐蝕增(zeng)重(zhong)較固態(tai)鹽(yan)環境下(xia)的(de)小。


由(you)于(yu)環(huan)(huan)境(jing)(jing)的(de)(de)(de)(de)差異導(dao)致反(fan)應機理(li)有(you)區(qu)別。100 h連續鹽(yan)(yan)霧(wu)環(huan)(huan)境(jing)(jing)NaCl的(de)(de)(de)(de)最終沉積(ji)量(liang)(liang)遠高(gao)于(yu)固(gu)態(tai)(tai)NaCl+H2O+O2中(zhong)鹽(yan)(yan)的(de)(de)(de)(de)初始(shi)沉積(ji)量(liang)(liang),但是(shi)初始(shi)時(shi)NaCl的(de)(de)(de)(de)沉積(ji)量(liang)(liang)要(yao)遠低(di)于(yu)固(gu)態(tai)(tai)NaCl+H2O+O2沉積(ji)量(liang)(liang)。兩種(zhong)環(huan)(huan)境(jing)(jing)下的(de)(de)(de)(de)瞬時(shi)反(fan)應環(huan)(huan)境(jing)(jing)不(bu)同,尤其是(shi)在(zai)(zai)(zai)初始(shi)反(fan)應階(jie)段,固(gu)態(tai)(tai)NaCl+H2O+O2沉積(ji)鹽(yan)(yan):多(duo)鹽(yan)(yan)、低(di)氧(yang)、低(di)H2O;NaCl鹽(yan)(yan)霧(wu)環(huan)(huan)境(jing)(jing):低(di)鹽(yan)(yan),高(gao)氧(yang),高(gao)H2O。合(he)金(jin)在(zai)(zai)(zai)NaCl環(huan)(huan)境(jing)(jing)的(de)(de)(de)(de)腐蝕(shi)行為(wei)本質(zhi)上取(qu)決于(yu)金(jin)屬及(ji)其化(hua)合(he)物(wu)(wu) (如(ru)氯化(hua)物(wu)(wu)和(he)氧(yang)化(hua)物(wu)(wu)) 的(de)(de)(de)(de)化(hua)學穩定(ding)性(xing)。圖(tu)7給出了Ti-O-Cl體系在(zai)(zai)(zai)600 oC的(de)(de)(de)(de)相穩定(ding)性(xing)圖(tu)。由(you)圖(tu)可知,富氧(yang)、富水(shui)蒸汽(qi)環(huan)(huan)境(jing)(jing)下導(dao)致氧(yang)化(hua)物(wu)(wu)是(shi)熱力(li)學穩定(ding)相,因此NaCl鹽(yan)(yan)霧(wu)環(huan)(huan)境(jing)(jing)明顯有(you)利(li)于(yu)形(xing)成(cheng)TiO2而(er)(er)(er)不(bu)是(shi)TiClx (s, g) 。但是(shi),在(zai)(zai)(zai)固(gu)態(tai)(tai)NaCl+H2O+O2環(huan)(huan)境(jing)(jing)下,NaCl/Ti60基體界面處的(de)(de)(de)(de)氧(yang)分(fen)壓(ya)低(di),而(er)(er)(er)氯分(fen)壓(ya)高(gao),從而(er)(er)(er)導(dao)致氯化(hua)物(wu)(wu)TiCl4為(wei)熱力(li)學穩定(ding)相。TiCl4易揮發,在(zai)(zai)(zai)氧(yang)化(hua)物(wu)(wu)中(zhong)形(xing)成(cheng)大(da)量(liang)(liang)缺陷(xian)。圖(tu)3和(he)4固(gu)態(tai)(tai)NaCl+H2O+O2環(huan)(huan)境(jing)(jing)氧(yang)化(hua)膜(mo)表面和(he)截面形(xing)貌疏松(song)多(duo)孔也證明這一點。氧(yang)化(hua)膜(mo)中(zhong)的(de)(de)(de)(de)孔洞(dong)和(he)缺陷(xian)被認為(wei)是(shi)腐蝕(shi)性(xing)介(jie)質(zhi)擴散到基體并導(dao)致合(he)金(jin)快速腐蝕(shi)的(de)(de)(de)(de)主要(yao)途徑之一。而(er)(er)(er)在(zai)(zai)(zai)鹽(yan)(yan)霧(wu)環(huan)(huan)境(jing)(jing)下,大(da)量(liang)(liang)氧(yang)化(hua)物(wu)(wu)的(de)(de)(de)(de)形(xing)成(cheng)對Ti60合(he)金(jin)具(ju)有(you)一定(ding)保護性(xing),從而(er)(er)(er)降低(di)腐蝕(shi)速度。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F007.jpg

圖7   依據HSC Chemistry 6.1計算得到的Ti—Cl—O體系在600 ℃穩定相圖


結合腐蝕產物(wu)(wu)分析結果,明確在(zai)NaCl鹽霧(wu)和(he)固態NaCl+H2O+O2兩(liang)種(zhong)環(huan)(huan)境(jing)(jing)形(xing)(xing)成(cheng)的(de)(de)腐蝕產物(wu)(wu)成(cheng)分和(he)結構(gou)完全(quan)不同。在(zai)固態NaCl+H2O+O2環(huan)(huan)境(jing)(jing)中暴(bao)露(lu)時,腐蝕產物(wu)(wu)層為多層結構(gou),呈復雜疏松的(de)(de)形(xing)(xing)貌(mao),其成(cheng)分主要為Na4Ti5O12和(he)TiO2。而在(zai)連(lian)續NaCl鹽霧(wu)環(huan)(huan)境(jing)(jing)中形(xing)(xing)成(cheng)的(de)(de)腐蝕產物(wu)(wu)層為單(dan)層結構(gou),主要成(cheng)分為Na2TiO3和(he)TiO2。這主要是由于在(zai)NaCl鹽霧(wu)環(huan)(huan)境(jing)(jing)中暴(bao)露(lu)前(qian)期(qi)NaCl的(de)(de)沉積量遠(yuan)(yuan)遠(yuan)(yuan)小于在(zai)固態NaCl+H2O+O2環(huan)(huan)境(jing)(jing)中的(de)(de),與TiO2反應速率較低(di)。


前人已(yi)經研(yan)究(jiu)了Ti60合金在(zai)600 ℃下(xia)固(gu)態NaCl+H2O+O2環境(jing)(jing)的腐(fu)蝕機理[11,13]。本文從動(dong)力學規(gui)律、腐(fu)蝕產物成分和結(jie)構結(jie)果(guo)都發現,在(zai)NaCl鹽(yan)霧(wu)環境(jing)(jing)中(zhong)的腐(fu)蝕機理與在(zai)固(gu)態NaCl+H2O+O2環境(jing)(jing)中(zhong)的完全不同,這主要是(shi)由于(yu)兩(liang)種環境(jing)(jing)中(zhong)NaCl的沉積量不同。


根據上述實(shi)驗結果,Ti60合金在600 ℃下NaCl鹽霧(wu)環境中發(fa)生一系(xi)列化(hua)學(xue)反應:首先,鹽霧(wu)中NaCl沉積在樣品表面,并與(yu)H2O,O2及TiO2發(fa)生如下化(hua)學(xue)反應,使其失去(qu)保護(hu)性:

微信截圖_202.jpg

產(chan)生(sheng)的Cl2和HCl氣體一(yi)部(bu)分(fen)向外揮發(fa),一(yi)部(bu)分(fen)會通過氧(yang)化膜的缺陷向基(ji)體擴散 (圖(tu)6可知(zhi)) ,并與基(ji)體發(fa)生(sheng)反應:

微信截圖_202.jpg

氣態(tai)TiCl4又會向氧化膜(mo)/氣氛(fen)環(huan)境界面(mian)擴散,在氧分壓高(gao)的地方(fang)被氧化為TiO2:

微信截圖_202.jpg

該過程產生的Cl2和(he)(he)HCl氣體按照反(fan)(fan)應(ying) (3) 和(he)(he) (4) 循環反(fan)(fan)應(ying),從而加速(su)基體的腐(fu)蝕。該腐(fu)蝕機理(li)與在固態NaCl+H2O+O2環境中的化學反(fan)(fan)應(ying)機理(li)有所區別,但整(zheng)體機制仍遵循“Cl活性氧化”機制。


最后對Ti60合金(jin)在(zai)(zai)(zai)鹽(yan)霧環(huan)境的(de)(de)腐(fu)蝕機理進行分析(xi)。如圖8所(suo)示(shi),Ti60合金(jin)首(shou)先發(fa)生(sheng)氧化(hua)反應,此時鹽(yan)霧引發(fa)少量NaCl顆粒沉積(ji)(ji)在(zai)(zai)(zai)樣品表面(mian),且不(bu)斷聚集。隨(sui)后,NaCl-H2O-O2協同與(yu)TiO2發(fa)生(sheng)化(hua)學反應,生(sheng)成(cheng)(cheng)Na2TiO3和揮發(fa)性(xing)TiCl4。揮發(fa)性(xing)TiCl4向氧化(hua)膜/大氣界(jie)面(mian)擴散。由(you)于(yu)鹽(yan)霧環(huan)境NaCl的(de)(de)瞬時NaCl沉積(ji)(ji)量低,產(chan)生(sheng)的(de)(de)揮發(fa)性(xing)TiCl4的(de)(de)量遠遠小于(yu)在(zai)(zai)(zai)固態NaCl+H2O+O2環(huan)境中的(de)(de),TiCl4在(zai)(zai)(zai)氧分壓高的(de)(de)區域被氧化(hua)為(wei)TiO2,又會覆蓋NaCl鹽(yan)霧環(huan)境之前(qian)產(chan)生(sheng)的(de)(de)缺陷。由(you)此,NaCl鹽(yan)霧環(huan)境下(xia)Ti60合金(jin)形(xing)成(cheng)(cheng)的(de)(de)腐(fu)蝕產(chan)物(wu)相對致密 (如圖4),腐(fu)蝕速率降(jiang)低。由(you)于(yu)氧化(hua)膜從(cong)外(wai)到(dao)內氧分壓逐漸降(jiang)低,所(suo)以從(cong)內到(dao)外(wai)依次形(xing)成(cheng)(cheng)Ti2O,TiO和TiO2腐(fu)蝕產(chan)物(wu)。

1E4CA192-B687-4bbb-9435-72F36B57FB74-F008.png

圖8   Ti60合(he)金(jin)在600 ℃下NaCl鹽霧環境中(zhong)的(de)腐蝕機理示意(yi)圖


4 結論


(1) 在600 ℃下NaCl鹽霧環(huan)(huan)境(jing)中腐(fu)蝕(shi)(shi)(shi)100 h內,Ti60合金的腐(fu)蝕(shi)(shi)(shi)速率顯著小于在固態(tai)NaCl+H2O+O2環(huan)(huan)境(jing)中的。在NaCl鹽霧環(huan)(huan)境(jing)下,腐(fu)蝕(shi)(shi)(shi)產(chan)物(wu)為(wei)雙(shuang)層結(jie)(jie)構,外腐(fu)蝕(shi)(shi)(shi)層相對致密主(zhu)要成分(fen)(fen)為(wei)Na2TiO3和(he)TiO2,內腐(fu)蝕(shi)(shi)(shi)產(chan)物(wu)層為(wei)顆粒狀(zhuang)的TiO和(he)Ti2O。在固態(tai)NaCl+H2O+O2環(huan)(huan)境(jing)中,腐(fu)蝕(shi)(shi)(shi)產(chan)物(wu)為(wei)疏(shu)松多孔(kong)的多層結(jie)(jie)構,外層腐(fu)蝕(shi)(shi)(shi)產(chan)物(wu)為(wei)Na4Ti5O12和(he)TiO2,內腐(fu)蝕(shi)(shi)(shi)產(chan)物(wu)層主(zhu)要成分(fen)(fen)為(wei)Ti2O。此外,在兩種環(huan)(huan)境(jing)中Cl都是以活性氧(yang)化(hua)機理 (Cl循環(huan)(huan)機理) 加速材料的腐(fu)蝕(shi)(shi)(shi)。


(2) 相對于固態(tai)NaCl+H2O+O2環(huan)境,在NaCl鹽霧環(huan)境中更易于形成TiO2為(wei)熱力學穩定(ding)相,腐(fu)蝕(shi)產物相對致密,孔洞和(he)缺(que)陷(xian)較少。Ti快(kuai)速氧化(hua)抑制缺(que)陷(xian)形成,腐(fu)蝕(shi)性介質向基體擴(kuo)散阻(zu)力大,因此(ci)在NaCl鹽霧環(huan)境中的(de)(de)腐(fu)蝕(shi)速率相對在固態(tai)NaCl+H2O+O2環(huan)境中的(de)(de)較低。


參考文獻(xian)

1 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600 ℃ [J]. Corros. Sci., 2020, 169: 108599

2 Shu Y H, Wang F H, Wu W T. Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor [J]. Oxid. Met., 2000, 54: 457

3 Wang F H, Geng S J, Zhu S L. Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700 oC [J]. Oxid. Met., 2002, 58: 185

4 Wang F H, Shu Y H. Influence of Cr content on the corrosion of Fe-Cr alloys: the synergistic effect of NaCl and water vapor [J]. Oxid. Met., 2003, 59: 201

5 Sun W Y, Wang J L, Yang L L, et al. Studies on corrosion behavior of a single-crystal superalloy and its sputtered nanocrystalline coatings with solid NaCl deposit in O2+38 vol.%H2O environment at 700 ℃ [J]. Corros. Sci., 2019, 161: 108187

6 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃ [J]. Corros. Sci., 2018, 133: 165

7 Rubacha K, Godlewska E, Mars K. Behaviour of a silicon-rich coating on Ti-46Al-8Ta (at.%) in hot-corrosion environments [J]. Corros. Sci., 2017, 118: 158

8 Eylon D, Seagle S R. Titanium technology in the USA-an overview [J]. J. Mater. Sci. Technol., 2001, 17: 439

9 Zhang H W, Man C, Wang L W, et al. Different corrosion behaviors between α and β phases of Ti6Al4V in fluoride-containing solutions: influence of alloying element Al [J]. Corros. Sci., 2020, 169: 108605

10 Shu Y H, Wang F H, Wu W T. Corrosion behavior of Ti60 alloy coated with a solid NaCl deposit in O2 plus water vapor at 500~700 ℃ [J]. Oxid. Met., 1999, 52: 463

11 Fan L, Liu L, Cui Y, et al. Effect of streaming water vapor on the corrosion behavior of Ti60 alloy under a solid NaCl deposit in water vapor at 600 ℃ [J]. Corros. Sci., 2019, 160: 108177

12 Fan L, Liu L, Lv Y H, et al. Effects of pre-oxidation on the corrosion behavior of pure Ti under coexistence of solid NaCl deposit and humid oxygen at 600 ℃: the diffusion of chlorine [J]. Sci. Rep., 2020, 10: 16291

13 Fan L, Liu L, Yu Z F, et al. Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet oxygen flow at 600 ℃ [J]. Sci. Rep., 2016, 6: 29019

14 Ciszak C, Popa I, Brossard J M, et al. NaCl induced corrosion of Ti-6Al-4V alloy at high temperature [J]. Corros. Sci., 2016, 110: 91

15 Ciszak C, Popa I, Brossard J M, et al. NaCl-induced high-temperature corrosion of β21S Ti alloy [J]. Oxid. Met., 2017, 87: 729

16 Ciszak C, Abdallah I, Popa I, et al. Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature [J]. Corros. Sci., 2020, 172: 108611

17 Li R, Cui Y, Liu L, et al. Corrosion behavior of Ti60 alloy under NaCl solution spray at 600 ℃ [J]. Corros. Sci., Submitted

18 Fan L. Investigation on corrosion behavior of Ti60 alloy under synergetic effect of solid NaCl deposit and water vapor at 600 ℃ [D]. Beijing: University of Chinese Academy of Sciences, 2016

18 范磊. 固態NaCl和水蒸汽協(xie)同作用下Ti60合金(jin)中(zhong)溫腐蝕(shi)行為(wei)的研(yan)究 [D]. 北(bei)京: 中(zhong)國科學(xue)院大學(xue), 2016

免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。