无码精品人妻一区二区三区影院_国产乱子经典视频在线观看_亚洲国产精品sss在线观看av_国产国语在线播放视频

17-4PH不銹鋼在含SRB的模擬海水中的應力腐蝕開裂行為研究

2021-08-27 02:27:59 hualin

摘要

在(zai)硫酸鹽還原菌(jun) (SRB) 接種的(de)(de)(de)模(mo)擬海洋溶液中(zhong),觀察(cha)并(bing)研究了(le)SRB和(he)外加應(ying)力對17-4 PH不銹鋼(gang)腐蝕(shi)行(xing)為(wei)的(de)(de)(de)作用。分析應(ying)力-應(ying)變曲線和(he)斷口形(xing)貌(mao),對比在(zai)無(wu)菌(jun)溶液和(he)SRB接種溶液中(zhong)的(de)(de)(de)腐蝕(shi)行(xing)為(wei)差異(yi)。結果表明,與無(wu)菌(jun)溶液相比,SRB接種溶液中(zhong)單(dan)級(ji)時(shi)效、雙(shuang)級(ji)時(shi)效和(he)調質(zhi)(zhi)處(chu)理(li)(li)試樣(yang)的(de)(de)(de)ISCC值分別提(ti)高(gao)了(le)5.2%,9.3%和(he)4.4%。FeS的(de)(de)(de)產生增(zeng)強了(le)陽(yang)極(ji)溶解過程并(bing)加速(su)了(le)腐蝕(shi)反應(ying),雙(shuang)級(ji)時(shi)效試樣(yang)組織(zhi)中(zhong)粗大的(de)(de)(de)馬氏體(ti)(ti)有利于氫的(de)(de)(de)進入(ru)和(he)聚集(ji),增(zeng)加了(le)試樣(yang)對SRB的(de)(de)(de)敏感度。單(dan)級(ji)時(shi)效和(he)調質(zhi)(zhi)處(chu)理(li)(li)試樣(yang)的(de)(de)(de)應(ying)力腐蝕(shi)開(kai)裂 (SCC) 機理(li)(li)都是(shi)(shi)陽(yang)極(ji)溶解 (AD),而雙(shuang)級(ji)時(shi)效試樣(yang)是(shi)(shi)氫致開(kai)裂 (HIC)。

關鍵詞: 17-4 PH不銹鋼 ; 熱處理 ; 應變量(liang) ; SRB ; 應力腐蝕開裂

無氧(yang)環(huan)(huan)境(jing)(jing)(jing)和厭(yan)氧(yang)細菌(jun)在自然環(huan)(huan)境(jing)(jing)(jing)中普遍(bian)存(cun)在。因(yin)為環(huan)(huan)境(jing)(jing)(jing)中存(cun)在廣泛的(de)(de)硫酸鹽,硫酸鹽還原(yuan)菌(jun) (SRB) 通常(chang)被認(ren)為是(shi)微(wei)生(sheng)物(wu)(wu)(wu)誘導腐蝕(shi) (MIC) 的(de)(de)主要(yao)元(yuan)兇。在SRB存(cun)在下(xia)金屬(shu)的(de)(de)腐蝕(shi)機理(li)(li)是(shi)一(yi)個復雜的(de)(de)生(sheng)物(wu)(wu)(wu)化(hua)(hua)學過(guo)(guo)程,先前研(yan)究(jiu)人(ren)員針對(dui)有SRB參與的(de)(de)金屬(shu)腐蝕(shi)提出(chu)了各種(zhong)機制。陰(yin)極(ji)(ji)去極(ji)(ji)化(hua)(hua)理(li)(li)論認(ren)為,SRB通過(guo)(guo)一(yi)種(zhong)叫做“氫化(hua)(hua)酶”的(de)(de)酶來消耗陰(yin)極(ji)(ji)氫。而Costello[1]的(de)(de)研(yan)究(jiu)表(biao)明,H2S是(shi)一(yi)種(zhong)由SO42-還原(yuan)得到的(de)(de)陰(yin)極(ji)(ji)活性化(hua)(hua)合物(wu)(wu)(wu)。因(yin)此,陰(yin)極(ji)(ji)去極(ji)(ji)化(hua)(hua)理(li)(li)論仍(reng)然存(cun)在很大爭議[2]。李付紹等[3]分析了SRB對(dui)不銹鋼的(de)(de)腐蝕(shi)規律,研(yan)究(jiu)結果表(biao)明,SRB的(de)(de)代謝(xie)產物(wu)(wu)(wu)顯著降低了不銹鋼的(de)(de)點蝕(shi)電位(wei)。Chen等[4]觀察到材料表(biao)面生(sheng)物(wu)(wu)(wu)膜形成和縫隙中硫化(hua)(hua)物(wu)(wu)(wu)沉積(ji)導致電位(wei)差增(zeng)大。Domzalicki等[5]在相似的(de)(de)陰(yin)極(ji)(ji)極(ji)(ji)化(hua)(hua)條件(jian)下(xia)分析了鐵素體-珠光體和索(suo)氏體微(wei)觀結構對(dui)SRB氫輔(fu)助裂解的(de)(de)影響(xiang)。


關于微(wei)生(sheng)(sheng)物(wu)(wu)對SCC的(de)(de)影響仍存在(zai)(zai)爭議。Gunasekaran等[6]報道,微(wei)生(sheng)(sheng)物(wu)(wu)可(ke)以(yi)在(zai)(zai)低碳鋼表面形成保護膜,以(yi)抑(yi)制腐(fu)蝕(shi)。Xu等[7]表明(ming),當培(pei)養基(ji)中缺少有(you)機碳時(shi),SRB利(li)用Fe0氧(yang)化釋放的(de)(de)細(xi)(xi)胞(bao)外電(dian)子(zi)(zi)(zi)作為(wei)電(dian)子(zi)(zi)(zi)供體(ti),因(yin)此(ci)對碳鋼的(de)(de)腐(fu)蝕(shi)性更強。Zhang等[8]觀察到通過在(zai)(zai)培(pei)養基(ji)中加(jia)入電(dian)子(zi)(zi)(zi)介質可(ke)以(yi)增強電(dian)子(zi)(zi)(zi)傳遞并加(jia)速腐(fu)蝕(shi),認(ren)為(wei)在(zai)(zai)細(xi)(xi)胞(bao)外電(dian)子(zi)(zi)(zi)轉移理(li)論(lun)下,電(dian)子(zi)(zi)(zi)傳遞控制SRB導(dao)致的(de)(de)MIC程度。Xu等[9]提出了生(sheng)(sheng)物(wu)(wu)催(cui)化陰(yin)極硫酸鹽(yan)還原(yuan)理(li)論(lun),陽極反(fan)應為(wei)Fe0的(de)(de)氧(yang)化,陰(yin)極反(fan)應為(wei)生(sheng)(sheng)物(wu)(wu)催(cui)化下的(de)(de)SO42-還原(yuan)。SO42-還原(yuan)發(fa)生(sheng)(sheng)在(zai)(zai)SRB細(xi)(xi)胞(bao)質中,沒有(you)物(wu)(wu)理(li)陰(yin)極。鑒(jian)于此(ci),本文主(zhu)要研究SRB存在(zai)(zai)對不銹鋼在(zai)(zai)模擬海水條件下應力腐(fu)蝕(shi)開(kai)裂 (SCC) 行為(wei)的(de)(de)影響規律(lv)。


1 實驗(yan)方法


實驗材料是撫(fu)順特殊鋼(gang)有(you)限公(gong)司生產的05Cr17Ni4Cu4Nb (17-4PH) 馬(ma)氏體(ti)沉淀硬化不(bu)銹鋼(gang),其主(zhu)要(yao)化學成分(fen)如表1所示(shi)。


表1   17-4 PH不銹鋼的化學成(cheng)分(fen)

微信截圖_202.jpg

本實驗(yan)用17-4 PH不(bu)銹鋼均先進行1040 ℃保溫1 h的(de)(de)固(gu)溶處理(li)。單級時效處理(li)為(wei)(wei)(wei) (550 ℃×4 h),記(ji)為(wei)(wei)(wei)工(gong)(gong)藝A,相應的(de)(de)試(shi)(shi)樣(yang)(yang)(yang)稱為(wei)(wei)(wei)試(shi)(shi)樣(yang)(yang)(yang)A;雙級時效處理(li)為(wei)(wei)(wei) (520 ℃×4 h+550 ℃×4 h),記(ji)為(wei)(wei)(wei)工(gong)(gong)藝B,相應的(de)(de)試(shi)(shi)樣(yang)(yang)(yang)稱為(wei)(wei)(wei)試(shi)(shi)樣(yang)(yang)(yang)B;調質+時效處理(li)為(wei)(wei)(wei) (820 ℃×0.5 h+550 ℃×4 h),記(ji)為(wei)(wei)(wei)工(gong)(gong)藝C,相應的(de)(de)試(shi)(shi)樣(yang)(yang)(yang)簡(jian)為(wei)(wei)(wei)試(shi)(shi)樣(yang)(yang)(yang)C。3種熱(re)處理(li)工(gong)(gong)藝冷卻(que)方式均為(wei)(wei)(wei)空冷。升溫速率約150 ℃/min,冷卻(que)速率約80 ℃/min。


模擬海水溶液(ye)(ye)是(shi)配制的(de)(de)pH為(wei)7.5的(de)(de)3.5% (質量分(fen)數) NaCl溶液(ye)(ye)。含SRB的(de)(de)模擬海水中(zhong)使用的(de)(de)SRB菌(jun)是(shi)Desulfovibrio型,并且在(zai)美國(guo)石油協會推薦的(de)(de)標準培(pei)(pei)養(yang)基(ji)中(zhong)培(pei)(pei)養(yang)。培(pei)(pei)養(yang)基(ji)I的(de)(de)成(cheng)分(fen)為(wei):0.5 g/L Na2SO4,1 g/L NH4Cl,0.5 g/L K2HPO4,0.1 g/L CaCl2,2 g/L MgSO4·7H2O,1 g/L,1g/L酵母粉和3.5 g/L乳酸鈉(na);培(pei)(pei)養(yang)基(ji)II的(de)(de)成(cheng)分(fen)為(wei):0.1 g/L抗壞血酸,0.1 g/L保險粉和0.1 g/L硫(liu)酸亞鐵(tie)銨。用壓(ya)力(li)蒸汽滅菌(jun)鍋在(zai)121 ℃保溫(wen)15 min以進行高(gao)壓(ya)滅菌(jun)并空氣冷卻至25 ℃,冷卻后加(jia)入經紫外線滅菌(jun)的(de)(de)培(pei)(pei)養(yang)基(ji)II,完(wan)成(cheng)培(pei)(pei)養(yang)基(ji)配制。接菌(jun)時,將預先準備好的(de)(de)菌(jun)液(ye)(ye)放在(zai)恒(heng)溫(wen)培(pei)(pei)養(yang)箱內(nei) (30±2) ℃活化30 min[10]。


根據ASTM G49-85標準,自制應(ying)(ying)力框架(jia)施加(jia)恒定軸(zhou)向拉(la)應(ying)(ying)變(bian)來研究(jiu)17-4 PH不銹鋼在SRB接種溶(rong)液中的(de)應(ying)(ying)力腐蝕行為。試(shi)樣的(de)尺寸如(ru)圖1a所示,圖1b為SRB接種溶(rong)液中的(de)應(ying)(ying)力腐蝕實(shi)驗裝(zhuang)置示意圖[11]。將SRB接種溶(rong)液轉移至(zhi)密封室(shi)(shi),溶(rong)液和浸入的(de)試(shi)樣在室(shi)(shi)溫下恒應(ying)(ying)變(bian)負載保持21 d。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F001.png

圖1   用于(yu)應(ying)力(li)腐蝕實驗的試(shi)樣尺寸及實驗容器示意(yi)圖


2 結(jie)果與討論


2.1 不(bu)同熱處(chu)理后(hou)的組(zu)織形貌(mao)分析(xi)


單級(ji)時(shi)(shi)效(xiao)、雙級(ji)時(shi)(shi)效(xiao)和(he)(he)調(diao)質處(chu)理(li)(li)工藝(yi)后(hou)(hou)的(de)不銹鋼顯微(wei)組(zu)(zu)(zu)(zu)織(zhi)(zhi)如圖(tu)2所示(shi)。結果表明,材料內主要(yao)由回(hui)(hui)(hui)火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)和(he)(he)少量鐵(tie)(tie)素(su)體(ti)(ti)(ti)(ti)(ti)(ti)及殘(can)留(liu)奧(ao)(ao)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)組(zu)(zu)(zu)(zu)成(cheng)。圖(tu)2a中(zhong)(zhong)(zhong)固溶處(chu)理(li)(li)后(hou)(hou)直接(jie)時(shi)(shi)效(xiao)處(chu)理(li)(li)的(de)組(zu)(zu)(zu)(zu)織(zhi)(zhi)中(zhong)(zhong)(zhong)同時(shi)(shi)存在淬火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)和(he)(he)回(hui)(hui)(hui)火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti),白(bai)色區(qu)(qu)域(yu)為淬火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti),黑色區(qu)(qu)域(yu)為回(hui)(hui)(hui)火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)[12]。Ziewiec等[13]認(ren)為,17-4 PH不銹鋼是鐵(tie)(tie)素(su)體(ti)(ti)(ti)(ti)(ti)(ti)的(de)冷卻模(mo)式(shi),在冷卻過程中(zhong)(zhong)(zhong)相(xiang)(xiang)(xiang)變的(de)順序為:萊氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)→δ鐵(tie)(tie)素(su)體(ti)(ti)(ti)(ti)(ti)(ti)→γ奧(ao)(ao)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)+δ鐵(tie)(tie)素(su)體(ti)(ti)(ti)(ti)(ti)(ti)→馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)+δ鐵(tie)(tie)素(su)體(ti)(ti)(ti)(ti)(ti)(ti)。有(you)(you)研究[14]表明,組(zu)(zu)(zu)(zu)織(zhi)(zhi)中(zhong)(zhong)(zhong)還有(you)(you)少量的(de)殘(can)留(liu)奧(ao)(ao)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)和(he)(he)第二(er)相(xiang)(xiang)(xiang)析出(chu)物,主要(yao)為Cr7C3和(he)(he)fcc-Cu相(xiang)(xiang)(xiang),彌散析出(chu)的(de)細(xi)小(xiao)fcc-Cu相(xiang)(xiang)(xiang)和(he)(he)位(wei)(wei)錯交互作用產生強化。圖(tu)2b中(zhong)(zhong)(zhong)雙級(ji)時(shi)(shi)效(xiao)處(chu)理(li)(li)后(hou)(hou),白(bai)色組(zu)(zu)(zu)(zu)織(zhi)(zhi)區(qu)(qu)域(yu)減小(xiao),黑色組(zu)(zu)(zu)(zu)織(zhi)(zhi)區(qu)(qu)域(yu)增大(da),組(zu)(zu)(zu)(zu)織(zhi)(zhi)中(zhong)(zhong)(zhong)部分(fen)淬火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)轉變為條帶狀連接(jie)成(cheng)片(pian)狀的(de)回(hui)(hui)(hui)火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)。在雙級(ji)時(shi)(shi)效(xiao)處(chu)理(li)(li)之(zhi)后(hou)(hou),回(hui)(hui)(hui)火馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)均勻地(di)分(fen)布在試樣中(zhong)(zhong)(zhong)。圖(tu)2c中(zhong)(zhong)(zhong)調(diao)質處(chu)理(li)(li)后(hou)(hou),組(zu)(zu)(zu)(zu)織(zhi)(zhi)中(zhong)(zhong)(zhong)馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)均勻細(xi)小(xiao),層片(pian)狀位(wei)(wei)向關系(xi)明確。晶(jing)界相(xiang)(xiang)(xiang)互連接(jie)成(cheng)網狀,將(jiang)主要(yao)由馬(ma)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)和(he)(he)殘(can)留(liu)奧(ao)(ao)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)組(zu)(zu)(zu)(zu)成(cheng)的(de)晶(jing)粒包束在其中(zhong)(zhong)(zhong),這種組(zu)(zu)(zu)(zu)織(zhi)(zhi)形態(tai)與(yu)鋼中(zhong)(zhong)(zhong)產生較多的(de)殘(can)留(liu)奧(ao)(ao)氏(shi)體(ti)(ti)(ti)(ti)(ti)(ti)有(you)(you)關。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F002.png

圖2   經不同工(gong)藝處理(li)的(de)17-4PH不銹鋼的(de)顯微組織


2.2 不同測(ce)試(shi)介質中的力(li)學性能(neng)


2.2.1 應力-應變曲線分(fen)析


圖3為不同(tong)熱處理(li)工(gong)藝的17-4 PH不銹鋼在(zai)無(wu)菌(jun)和(he)接種(zhong)溶(rong)液(ye)(ye)中(zhong)的應力(li)-應變曲(qu)線(xian)。以(yi)單級(ji)(ji)(ji)(ji)(ji)時效(xiao)、雙級(ji)(ji)(ji)(ji)(ji)時效(xiao)和(he)調質(zhi)處理(li)試(shi)(shi)樣(yang)在(zai)空氣中(zhong)的應力(li)-應變曲(qu)線(xian)為參考來評(ping)價無(wu)菌(jun)和(he)SRB接種(zhong)溶(rong)液(ye)(ye)中(zhong)的SCC敏感性(xing)。在(zai)無(wu)菌(jun)溶(rong)液(ye)(ye)中(zhong),雙級(ji)(ji)(ji)(ji)(ji)時效(xiao)過(guo)程后試(shi)(shi)樣(yang)的屈服(fu)(fu)強度高于單級(ji)(ji)(ji)(ji)(ji)時效(xiao)處理(li)和(he)調質(zhi)處理(li)后試(shi)(shi)樣(yang)的屈服(fu)(fu)強度,分別約為1010,980和(he)855 MPa。在(zai)SRB接種(zhong)的溶(rong)液(ye)(ye)中(zhong),雙級(ji)(ji)(ji)(ji)(ji)時效(xiao)處理(li)、單級(ji)(ji)(ji)(ji)(ji)時效(xiao)和(he)調質(zhi)處理(li)試(shi)(shi)樣(yang)的屈服(fu)(fu)強度,分別約為950,970和(he)850 MPa,分別比無(wu)菌(jun)溶(rong)液(ye)(ye)降低了5.9%,1%和(he)0.58%。實驗結果表(biao)明,雙級(ji)(ji)(ji)(ji)(ji)時效(xiao)處理(li)后的17-4 PH不銹鋼對SRB最敏感,經過(guo)調質(zhi)處理(li)工(gong)藝試(shi)(shi)樣(yang)的SRB敏感性(xing)降低。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F003.png

圖(tu)3   經(jing)不同(tong)工藝(yi)熱(re)處理的(de)17-4 PH不銹鋼試樣在不同(tong)環(huan)境中的(de)應(ying)力-應(ying)變曲(qu)線及斷面收縮率


圖3d為(wei)17-4 PH不銹鋼在(zai)不同環境介質(zhi)中的斷(duan)(duan)面收縮率(lv)。可(ke)知,單級(ji)時效(xiao)(xiao)、雙級(ji)時效(xiao)(xiao)和調(diao)質(zhi)處理試(shi)(shi)樣(yang)均在(zai)空氣中擁有最大的斷(duan)(duan)面收縮率(lv)。與(yu)空氣中相比,施加的恒定應變(bian)可(ke)以降低試(shi)(shi)樣(yang)的斷(duan)(duan)面收縮率(lv)。與(yu)無菌溶液相比,SRB接種溶液中單級(ji)時效(xiao)(xiao)、雙級(ji)時效(xiao)(xiao)和調(diao)質(zhi)處理試(shi)(shi)樣(yang)的斷(duan)(duan)面收縮率(lv)分別減少了5.38%, 7.74%和3.72%。


有研究[15,16]結果表明:在SRB接種的溶液(ye)中存(cun)在H+,H+誘導(dao)材料的局部出(chu)(chu)現(xian)可(ke)(ke)塑性(xing),導(dao)致材料的延伸率出(chu)(chu)現(xian)異常的現(xian)象。因此,提出(chu)(chu)可(ke)(ke)采用材料斷(duan)(duan)裂(lie)前后截面的尺寸變化的斷(duan)(duan)面收縮率來測量應力腐(fu)蝕敏感性(xing) (ISCC)。ISCC可(ke)(ke)由下(xia)面兩(liang)式計算獲得[17]:

微信截圖_202.jpg

式中,A0為試(shi)(shi)樣(yang)的原始橫(heng)截(jie)面積(ji),mm2;A1為斷(duan)裂后試(shi)(shi)樣(yang)的橫(heng)截(jie)面積(ji),mm2。

微信截圖_202.jpg

式中,ψs為(wei)(wei)在3.5%NaCl溶液中測(ce)得的(de)斷面收縮(suo)率,%;ψa為(wei)(wei)在空氣(qi)中測(ce)得的(de)斷面收縮(suo)率,%。


由上面兩式可知(zhi),當ISCC的值越接(jie)近(jin)1時(shi),SCC的敏感性越高。表(biao)2顯示了在(zai)無(wu)菌(jun)和(he)SRB接(jie)種溶液中17-4PH不銹(xiu)鋼的ISCC值。可見,在(zai)有(you)菌(jun)環境(jing)下,單(dan)級時(shi)效、雙級時(shi)效和(he)調質處理試樣(yang)的ISCC分別提高了5.2%,9.3%和(he)4.4%。


表2   不同熱處理(li)后的試樣(yang)在(zai)無菌(jun)和SRB接種溶液中的ISCC值

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F004.png

根據(ju)經典腐(fu)蝕(shi)理論,細菌通過(guo)稱為氫化酶的(de)(de)(de)酶消耗陰極氫。在靠近腐(fu)蝕(shi)電(dian)位(wei)的(de)(de)(de)電(dian)位(wei)下形(xing)成的(de)(de)(de)氧(yang)化層(ceng)或(huo)腐(fu)蝕(shi)產(chan)物(wu)的(de)(de)(de)存在將催化析(xi)氫[18]。也有研究人員提出“替代理論”,涉及細菌本身,位(wei)于金屬(shu)(shu)上(shang)或(huo)與金屬(shu)(shu)相鄰的(de)(de)(de)微(wei)生物(wu)不(bu)直接(jie)侵蝕(shi)金屬(shu)(shu),它們通過(guo)新陳代謝的(de)(de)(de)副產(chan)物(wu)誘導或(huo)促進腐(fu)蝕(shi)[19]。在SRB接(jie)種溶液中,電(dian)極反(fan)應如下:

微信截圖_202.jpg



2.2.2 斷口形(xing)貌分析


圖(tu)4顯(xian)示了(le)17-4 PH不銹鋼(gang)在(zai)無(wu)(wu)(wu)菌和接(jie)種溶液(ye)中(zhong)(zhong)的(de)(de)微(wei)觀斷(duan)口形貌。在(zai)圖(tu)4a和d中(zhong)(zhong),單級(ji)(ji)時效試樣的(de)(de)韌性(xing)(xing)顯(xian)著(zhu)(zhu)下降(jiang)。在(zai)無(wu)(wu)(wu)菌溶液(ye)中(zhong)(zhong),沿(yan)著(zhu)(zhu)不同高(gao)度的(de)(de)平行解理面(mian)形成解理裂(lie)(lie)(lie)縫。在(zai)含SRB的(de)(de)溶液(ye)中(zhong)(zhong),在(zai)斷(duan)裂(lie)(lie)(lie)面(mian)上(shang)(shang)出現(xian)了(le)狹(xia)長的(de)(de)裂(lie)(lie)(lie)紋。在(zai)圖(tu)4c中(zhong)(zhong),調(diao)質處理試樣在(zai)無(wu)(wu)(wu)菌溶液(ye)的(de)(de)斷(duan)裂(lie)(lie)(lie)表面(mian)上(shang)(shang)出現(xian)大量不規(gui)則形狀的(de)(de)凹(ao)坑和微(wei)孔,為典型延性(xing)(xing)斷(duan)裂(lie)(lie)(lie)特征。在(zai)圖(tu)4f中(zhong)(zhong),含SRB溶液(ye)中(zhong)(zhong)的(de)(de)試樣上(shang)(shang)觀察到類(lei)似的(de)(de)斷(duan)裂(lie)(lie)(lie)特征。在(zai)圖(tu)4b和e中(zhong)(zhong),雙(shuang)級(ji)(ji)時效試樣中(zhong)(zhong),脆性(xing)(xing)斷(duan)裂(lie)(lie)(lie)在(zai)斷(duan)裂(lie)(lie)(lie)表面(mian)上(shang)(shang)更(geng)明(ming)顯(xian),并且可觀察到更(geng)深和更(geng)寬的(de)(de)裂(lie)(lie)(lie)縫。大尺寸裂(lie)(lie)(lie)縫對(dui)應于斷(duan)面(mian)收縮率(lv)的(de)(de)降(jiang)低,這證實雙(shuang)級(ji)(ji)時效的(de)(de)17-4 PH不銹鋼(gang)對(dui)SRB最敏感(gan)。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F005.png

圖(tu)4   經不(bu)(bu)同工藝熱(re)處理的(de)(de)17-4 PH不(bu)(bu)銹鋼在不(bu)(bu)同環境中的(de)(de)斷口(kou)形(xing)貌


通(tong)(tong)過研究鋼(gang)中氫的滲透、氫的進入(ru)機制(zhi)、氫的擴散率(lv)以及氫的捕捉(zhuo)和去除可知,對于相同的微觀結構(gou),隨著夾(jia)雜物含量的增加,鋼(gang)的抗HIC性能降(jiang)低,局(ju)部不規則性對HIC敏(min)感性也有(you)顯(xian)著影響[20]。研究表(biao)明[21],氫原(yuan)(yuan)子(zi)可以降(jiang)低Fe-Fe鍵的內聚力或(huo)增加鋼(gang)的局(ju)部脆性從而引(yin)發(fa)微裂(lie)(lie)紋。雙級時(shi)效試樣中包含的夾(jia)雜物或(huo)粗大(da)的板條狀馬氏(shi)體為氫的聚集提供了條件,極易造成裂(lie)(lie)紋萌(meng)生[22]。一旦(dan)微裂(lie)(lie)紋開始擴展,積聚的氫原(yuan)(yuan)子(zi)也會通(tong)(tong)過增加裂(lie)(lie)紋尖(jian)端鋼(gang)的局(ju)部溶(rong)解速率(lv)來促進裂(lie)(lie)紋擴展或(huo)通(tong)(tong)過降(jiang)低新形成平面(mian)的表(biao)面(mian)能來降(jiang)低斷裂(lie)(lie)功[23]。


SRB接(jie)種溶液中(zhong)17-4 PH不(bu)(bu)銹鋼(gang)的(de)側(ce)表面斷(duan)裂(lie)形態(tai)的(de)顯微照(zhao)片見(jian)圖(tu)5。對于全部試(shi)樣(yang)(yang),捕獲(huo)區域距斷(duan)裂(lie)線(xian)約300 μm。不(bu)(bu)同(tong)熱(re)處理條件下的(de)側(ce)面顯微照(zhao)片顯示出(chu)不(bu)(bu)同(tong)的(de)形態(tai)特征(zheng)。在(zai)圖(tu)5a中(zhong),單級時效(xiao)處理試(shi)樣(yang)(yang)的(de)側(ce)表面上出(chu)現了(le)一(yi)些細小的(de)微裂(lie)紋(wen)。對于調質處理的(de)試(shi)樣(yang)(yang)可觀察到類似的(de)形態(tai) (圖(tu)5c)。在(zai)雙級時效(xiao)試(shi)樣(yang)(yang)上觀察到了(le)更深的(de)裂(lie)紋(wen) (圖(tu)5b),這證(zheng)實了(le)雙級時效(xiao)17-4 PH不(bu)(bu)銹鋼(gang)的(de)脆(cui)性斷(duan)裂(lie)特征(zheng)。

6590047C-2D15-4e6d-8FCD-2F06027BCA38-F006.png

圖5   經不同工藝熱處理(li)的17-4 PH不銹鋼試樣在(zai)SRB接(jie)種溶(rong)液中(zhong)的側面斷裂形貌


3 結論


(1) 熱處(chu)理(li)工藝可以提高17-4 PH不銹鋼的(de)抗腐(fu)蝕性能(neng),試(shi)(shi)樣(yang)(yang)的(de)耐電化(hua)學腐(fu)蝕能(neng)力(li)表現(xian)為:調質處(chu)理(li)試(shi)(shi)樣(yang)(yang)>單級(ji)時效(xiao)處(chu)理(li)試(shi)(shi)樣(yang)(yang)>雙級(ji)時效(xiao)處(chu)理(li)試(shi)(shi)樣(yang)(yang)。


(2) 在施加應力的(de)單(dan)獨(du)作用下(xia),雙(shuang)級(ji)時效試樣中的(de)回火馬氏體(ti)尺(chi)寸粗大,促進裂紋萌生,降(jiang)低(di)了(le)試樣的(de)屈服(fu)輕度,增加了(le)應力腐蝕敏(min)感性。


(3) 在SRB接種(zhong)溶液中,FeS和H2S的(de)產(chan)生增強(qiang)了陽極溶解和氫滲透,加速了腐蝕反應。與無菌溶液相比,阻(zu)抗值(zhi)降低(di),ISCC增加。雙級(ji)時效試樣的(de)ISCC變化量最大,對SRB最敏感(gan)。

參考文獻

[1] Song J, Curtin W A. A nanoscale mechanism of hydrogen embrittlement in metals [J]. Acta Mater., 2011, 59(4): 1557

doi: 10.1016/j.actamat.2010.11.019

[2] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067

doi: 10.1007/s11274-012-1116-0 pmid: 22806745

[3] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536

[3] (李付紹, 安茂(mao)忠(zhong), 劉光洲等. 硫酸鹽(yan)還(huan)原菌對18-8不(bu)銹鋼(gang)點蝕行為的(de)影響 [J]. 金屬學報, 2009, 45: 536)

[4] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1

[5] Dom?alicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2015, 58: 413

[6] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953

[7] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74

doi: 10.1016/j.ibiod.2014.03.014

[8] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14

pmid: 25023048

[9] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52

pmid: 27071053

[10] Zhao Z H, Wang X, Wu M. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel [J]. Heat Treat. Met., 2018, 43(12): 109

[10] (趙(zhao)志(zhi)浩, 王旭, 吳明. 熱處理對05Cr17Ni4Cu4Nb鋼耐蝕性的影響 [J]. 金屬(shu)熱處理, 2018, 43(12): 109)

[11] Wu M, Zhao Z H, Wang X, et al. Synergistic effects of a sulfate-reducing bacteria and an applied stress on the corrosion behavior of 17-4 PH stainless steel after different heat treatments[J]. Int. J. Electrochem. Sci., 2020, 15: 208

[12] Liu R L, Yan M F, Qiao Y J, et al. Heat treatment and tensile properties of martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(2): 87

[12] (劉瑞良, 閆牧夫, 喬(qiao)英杰等(deng). 馬氏體不銹鋼熱(re)處(chu)理(li)(li)及其拉(la)伸性能 [J]. 金屬熱(re)處(chu)理(li)(li), 2013, 38(2): 87)

[13] Ziewiec A, Zielińska-Lipiec A, Tasak E. Microstructure of welded joints of x5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment [J]. Arch. Metall. Mater., 2014, 59(3): 965

[14] Deng D W, Chen R, Tian X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(4): 32

[14] (鄧(deng)德偉(wei), 陳蕊, 田(tian)鑫(xin)等(deng). 熱處理對17-4PH馬氏體不銹鋼顯微(wei)組(zu)織及性能的(de)影響(xiang) [J]. 金屬熱處理, 2013, 38(4): 32)

[15] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68: 693

[16] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22

[17] Torres-Islas A, González-Rodríguez J G. Effect of electrochemical potential and solution concentration on the SCC behaviour of X-70 pipeline steel in NaHCO3 [J]. Int. J. Electrochem. Sci., 2009, 4: 640

[18] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corros. Sci., 2008, 50: 3116

[19] Wang D, Xie F, Wu M, et al. Stress corrosion cracking behavior of X80 pipeline steel in acid soil environment with SRB [J]. Metall. Mater. Trans., 2017, 48A: 2999

[20] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169

[21] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84

doi: 10.1016/j.ibiod.2014.05.007

[22] Casanova T, Crousier J. The influence of an oxide layer on hydrogen permeation through steel [J]. Corros. Sci., 1996, 38: 1535

doi: 10.1016/0010-938X(96)00045-5

[23] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850

免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。