高鐵動態交流干擾下管道鋼的腐蝕行為試驗研究
摘要
利用電化學(xue)測試、表面分析及(ji)失重分析技術,研究了模擬高(gao)鐵動態(tai)(tai)交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)下(xia)管(guan)(guan)道鋼的腐(fu)(fu)蝕(shi)行為和規(gui)律及(ji)陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)的有效性。結果表明(ming)(ming),動態(tai)(tai)交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)下(xia),陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)電位向(xiang)(xiang)負(fu)方向(xiang)(xiang)偏(pian)移,交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)增(zeng)大管(guan)(guan)道的陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)電流(liu)密度;動態(tai)(tai)交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)下(xia),隨干(gan)(gan)擾(rao)(rao)水平(ping)增(zeng)加(jia)(jia)(jia),管(guan)(guan)道鋼腐(fu)(fu)蝕(shi)程度增(zeng)加(jia)(jia)(jia),點蝕(shi)坑(keng)明(ming)(ming)顯加(jia)(jia)(jia)深(shen)。陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)明(ming)(ming)顯減緩交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)試樣的腐(fu)(fu)蝕(shi)程度,腐(fu)(fu)蝕(shi)速率(lv)降為不施加(jia)(jia)(jia)陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)試樣的一半;本(ben)實驗條件下(xia),-1.0 V陰(yin)(yin)極(ji)保(bao)(bao)護(hu)(hu)電位可(ke)充分保(bao)(bao)護(hu)(hu)低于水平(ping)100 A/m2的動態(tai)(tai)交(jiao)流(liu)干(gan)(gan)擾(rao)(rao)腐(fu)(fu)蝕(shi)。
關(guan)鍵詞: 管(guan)道鋼 ; 雜散(san)電流(liu)(liu) ; 交(jiao)流(liu)(liu)干擾 ; 交(jiao)流(liu)(liu)腐蝕 ; 陰極保護(hu)
近(jin)年來(lai)(lai)我(wo)國油氣管(guan)道(dao)和(he)(he)電(dian)氣化(hua)(hua)鐵(tie)路(lu)(lu)建設發展迅猛(meng),截至2020年底,中國鐵(tie)路(lu)(lu)營(ying)業(ye)里程(cheng)達14.6×104 km,其(qi)中高(gao)速鐵(tie)路(lu)(lu)3.8×104 km;《新(xin)時代交通(tong)強(qiang)國鐵(tie)路(lu)(lu)先行(xing)規劃綱要》明確指出,到2035年,全(quan)(quan)國鐵(tie)路(lu)(lu)網(wang)運營(ying)里程(cheng)20×104 km,其(qi)中高(gao)速鐵(tie)路(lu)(lu)7×104 km。由于(yu)地理位置的限制,埋地管(guan)道(dao)與電(dian)氣化(hua)(hua)鐵(tie)路(lu)(lu)平(ping)行(xing)或(huo)交叉鋪設情況越來(lai)(lai)越多,形成了錯(cuo)綜復雜(za)的能源輸送網(wang)和(he)(he)電(dian)氣化(hua)(hua)鐵(tie)路(lu)(lu)網(wang),來(lai)(lai)自(zi)高(gao)鐵(tie)的雜(za)散電(dian)流(liu)干擾(rao)問題日益普(pu)遍和(he)(he)嚴重,引起地下管(guan)道(dao)直(zhi)接腐蝕或(huo)氫(qing)損傷,導致(zhi)管(guan)道(dao)泄(xie)露、爆炸等安全(quan)(quan)事故,干擾(rao)腐蝕案例國內外均有大量報道(dao)[1-3]。
我(wo)國高(gao)鐵(tie)(tie)采用(yong)工(gong)頻(pin)單相25 kV交(jiao)(jiao)流(liu)(liu)供(gong)(gong)電(dian)制式(shi)(shi),額定頻(pin)率50 Hz,一(yi)般采用(yong)AT供(gong)(gong)電(dian)方式(shi)(shi)[1]。使用(yong)軌道(dao)和(he)(he)大地作(zuo)為返回(hui)路(lu)(lu)徑返回(hui)牽(qian)(qian)引(yin)變電(dian)站。鐵(tie)(tie)路(lu)(lu)可能通過容(rong)性(xing)耦(ou)(ou)合(he)、阻性(xing)耦(ou)(ou)合(he)和(he)(he)感(gan)性(xing)耦(ou)(ou)合(he)等方式(shi)(shi)干(gan)擾(rao)地下(xia)管道(dao)。不(bu)同于(yu)電(dian)感(gan)耦(ou)(ou)合(he)引(yin)起的(de)電(dian)力系統(tong)的(de)穩(wen)態交(jiao)(jiao)流(liu)(liu)干(gan)擾(rao)[3],鐵(tie)(tie)路(lu)(lu)牽(qian)(qian)引(yin)電(dian)力系統(tong)的(de)干(gan)擾(rao)是電(dian)感(gan)耦(ou)(ou)合(he)與電(dian)阻耦(ou)(ou)合(he)作(zuo)用(yong)下(xia)的(de)瞬時交(jiao)(jiao)流(liu)(liu)干(gan)擾(rao)[4, 5]。無有效保(bao)護措(cuo)施(shi)或長期干(gan)擾(rao)下(xia),管線會(hui)產生嚴重(zhong)腐蝕,危及運(yun)輸和(he)(he)運(yun)行安(an)全,并對(dui)附近的(de)人員和(he)(he)與之(zhi)連接的(de)設備(bei)造(zao)成危害[6]。
人們對(dui)(dui)穩(wen)態(tai)(tai)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)下的(de)(de)(de)腐(fu)蝕(shi)(shi)行(xing)(xing)為(wei)及風(feng)險評估進行(xing)(xing)了大量研(yan)究,取得了較(jiao)大進展[7-11]。Lalvani和(he)(he)Zhang[12]指(zhi)出,交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)可(ke)以減少陽(yang)極(ji)和(he)(he)陰(yin)極(ji)極(ji)化(hua),降低(di)金屬(shu)的(de)(de)(de)鈍(dun)化(hua),增加腐(fu)蝕(shi)(shi)速(su)率(lv)。Song等(deng)[13]的(de)(de)(de)研(yan)究表明(ming),陰(yin)極(ji)保(bao)護(hu)電位低(di)于(yu)-1.0 V (vs. CSE) 時,交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)腐(fu)蝕(shi)(shi)速(su)率(lv)不(bu)受交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)電壓影響(xiang),而主要受頻率(lv)和(he)(he)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)電流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)密(mi)(mi)度影響(xiang)。Weng和(he)(he)Wang[14]的(de)(de)(de)研(yan)究結果表明(ming),碳鋼的(de)(de)(de)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)腐(fu)蝕(shi)(shi)速(su)率(lv)與交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)電流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)密(mi)(mi)度 (0~250 A/m2) 遵循冪函數關(guan)系;涂層存在微缺陷(xian)或(huo)表面破損時,交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)下即使采(cai)用陰(yin)極(ji)保(bao)護(hu),管道的(de)(de)(de)腐(fu)蝕(shi)(shi)也(ye)可(ke)能非常嚴重[15]。現(xian)有的(de)(de)(de)研(yan)究結果不(bu)能有效地預測碳鋼的(de)(de)(de)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)腐(fu)蝕(shi)(shi)。不(bu)同于(yu)高(gao)壓交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)輸電線(xian)路的(de)(de)(de)穩(wen)態(tai)(tai)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao),高(gao)鐵對(dui)(dui)管道的(de)(de)(de)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)是動(dong)態(tai)(tai)的(de)(de)(de),其(qi)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)特征與牽引(yin)供電方式和(he)(he)機車運行(xing)(xing)狀態(tai)(tai)密(mi)(mi)切相關(guan)。動(dong)態(tai)(tai)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)影響(xiang)因素和(he)(he)影響(xiang)過程復雜,除(chu)了干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)強度、頻率(lv)及干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)時間等(deng)因素外(wai),還與管線(xian)陰(yin)極(ji)保(bao)護(hu)水平(ping)密(mi)(mi)切相關(guan)。目(mu)前(qian)人們對(dui)(dui)動(dong)態(tai)(tai)交(jiao)(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)(rao)(rao)(rao)下金屬(shu)/土壤界面電化(hua)學過程、金屬(shu)腐(fu)蝕(shi)(shi)行(xing)(xing)為(wei)規律等(deng)仍缺乏(fa)深入了解。
本研(yan)究構建動態交流干擾管道腐(fu)(fu)蝕模擬實(shi)驗裝(zhuang)置,利(li)用電(dian)化(hua)學和(he)失重方(fang)法(fa)研(yan)究動態交流干擾下管線鋼電(dian)化(hua)學極化(hua)特征(zheng)及腐(fu)(fu)蝕行為(wei)。利(li)用掃(sao)描電(dian)子顯(xian)微(wei)鏡(jing) (SEM) 和(he)激光(guang)共聚焦顯(xian)微(wei)鏡(jing) (CLSM) 對腐(fu)(fu)蝕產物(wu)和(he)腐(fu)(fu)蝕形(xing)貌進行表征(zheng)。研(yan)究動態交流干擾強度及陰極保護(hu)水(shui)平等對管道鋼腐(fu)(fu)蝕的影響,為(wei)受高鐵線路(lu)干擾管道的評估及防護(hu)措施的制定提供依據(ju)。
1 實驗(yan)方法(fa)
實驗基(ji)材為(wei)X65管線鋼(gang)。試(shi)樣切割(ge)成(cheng)面(mian)積為(wei)1 cm2、厚度(du)5 mm的圓形(xing)試(shi)片。用(yong)(yong)于(yu)電化(hua)學極化(hua)測試(shi)的試(shi)樣由環氧(yang)樹(shu)脂封(feng)固(gu),裸露(lu)工(gong)作面(mian)積為(wei)1 cm2,在(zai)試(shi)樣背(bei)部焊接(jie)導線并將(jiang)除工(gong)作面(mian)外其余表面(mian)采用(yong)(yong)環氧(yang)樹(shu)脂密(mi)封(feng)。用(yong)(yong)于(yu)長期試(shi)驗并進行失重(zhong)測試(shi)的試(shi)樣采用(yong)(yong)特(te)制的有機玻璃盒封(feng)裝,背(bei)面(mian)用(yong)(yong)銅線連(lian)接(jie),工(gong)作面(mian)暴露(lu)面(mian)積為(wei)1 cm2。試(shi)樣工(gong)作面(mian)用(yong)(yong)砂(sha)紙逐級打磨至1000#,用(yong)(yong)去離子水(shui)和無水(shui)乙醇清洗(xi),冷風吹干(gan),備用(yong)(yong)。
實驗介質采用(yong)土壤(rang)模擬溶(rong)液飽和的石英(ying)砂 (80~100目),土壤(rang)模擬溶(rong)液為含5 mmol·L-1 Na2SO4+2.5 mmol·L-1 NaHCO3+10 mmol·L-1 NaCl的去離子(zi)水溶(rong)液。
根據高鐵動(dong)態(tai)交流(liu)干(gan)擾(rao)(rao)特點,設計(ji)了動(dong)態(tai)交流(liu)干(gan)擾(rao)(rao)模(mo)擬(ni)電(dian)(dian)路及試(shi)驗裝置,如圖1所示。電(dian)(dian)路包(bao)括交流(liu)電(dian)(dian)源(yuan)、循環時間繼電(dian)(dian)器、電(dian)(dian)容、電(dian)(dian)感、恒(heng)電(dian)(dian)位儀、輔(fu)助電(dian)(dian)極、參比電(dian)(dian)極和X65鋼工作電(dian)(dian)極。通(tong)過交流(liu)電(dian)(dian)源(yuan)施加(jia)交流(liu)電(dian)(dian)流(liu)并使用繼電(dian)(dian)器控制連接或(huo)斷開交流(liu)干(gan)擾(rao)(rao)電(dian)(dian)源(yuan)或(huo)直(zhi)流(liu)陰極保護(hu)電(dian)(dian)源(yuan),模(mo)擬(ni)動(dong)態(tai)交流(liu)干(gan)擾(rao)(rao)。
圖1 動(dong)態交流干擾(rao)實驗(yan)裝置(zhi)示意圖
動態交流干(gan)擾下管(guan)線(xian)鋼極化(hua)測(ce)(ce)(ce)量采用(yong)三電(dian)(dian)極體(ti)系,X80鋼為工作電(dian)(dian)極,鉑網為輔助電(dian)(dian)極,飽和(he)甘汞(gong)為參(can)比電(dian)(dian)極 (SCE)。采用(yong)交流電(dian)(dian)源對試(shi)樣分別施加(jia)0、30、100和(he)300 A/cm2等不同水平交流電(dian)(dian)干(gan)擾,在施加(jia)交流干(gan)擾過程中測(ce)(ce)(ce)試(shi)管(guan)線(xian)鋼的(de)極化(hua)曲(qu)線(xian)。極化(hua)曲(qu)線(xian)使用(yong)Gamry 600+進行測(ce)(ce)(ce)試(shi),掃(sao)描速率為1 mV/s,掃(sao)描范圍為±250 mV (OCP)。
圖(tu)2是動(dong)態交(jiao)流(liu)干(gan)(gan)擾(rao)實驗原理圖(tu),交(jiao)流(liu)干(gan)(gan)擾(rao)采用恒電流(liu)模(mo)式,每周期10 min:單次干(gan)(gan)擾(rao)時(shi)間4 min,間隔時(shi)間6 min。交(jiao)流(liu)干(gan)(gan)擾(rao)電流(liu)密度分別為(wei)100和300 A/m2。實驗參數如表(biao)1所示。陰(yin)極保護(hu)電位(wei)通過恒電位(wei)儀(yi)施(shi)加。實驗過程中,使用uDL2數據記錄儀(yi)采集工作電極電位(wei)。
圖2 不同的交(jiao)流電流密度(du)干擾實驗原(yuan)理圖
表1 動(dong)態(tai)交(jiao)流干擾條件(jian)下的(de)實驗參(can)數(shu)設置
實驗(yan)后(hou),取出試樣并使用(yong)無水(shui)(shui)乙(yi)醇脫水(shui)(shui)。干(gan)燥后(hou),用(yong)FEG XL30掃描電子(zi)(zi)顯(xian)微(wei)鏡(jing) (SEM) 觀察管線鋼試樣表面腐(fu)(fu)(fu)蝕(shi)(shi)(shi)產物(wu)。試樣用(yong)添(tian)加緩蝕(shi)(shi)(shi)劑(ji)的(de)鹽酸 (500 mL HCl,500 mL去離(li)子(zi)(zi)水(shui)(shui)和(he)20 g六(liu)次甲(jia)基四胺) 清洗液除去腐(fu)(fu)(fu)蝕(shi)(shi)(shi)產物(wu),用(yong)去離(li)子(zi)(zi)水(shui)(shui)和(he)無水(shui)(shui)乙(yi)醇清洗,干(gan)燥。用(yong)SEM和(he)Zeiss LSM 510激光共聚(ju)焦顯(xian)微(wei)鏡(jing) (CLSM) 觀察試樣微(wei)觀腐(fu)(fu)(fu)蝕(shi)(shi)(shi)形(xing)貌,利(li)用(yong)Rigaku-D/max 2500PC X射(she)線衍射(she)儀 (XRD) 分析腐(fu)(fu)(fu)蝕(shi)(shi)(shi)產物(wu)的(de)組成。對實驗(yan)前后(hou)試樣精確稱重(zhong),采用(yong)下式(shi)計(ji)算試樣的(de)腐(fu)(fu)(fu)蝕(shi)(shi)(shi)速率vCR (mm/a):
(1)
其中,ΔW是試樣實驗前后質量損失(shi) (g),S是試樣暴露表面 (m2),t測試持(chi)續時間 (d)。
2 結果與討論
2.1 交流(liu)干(gan)擾(rao)下管(guan)道鋼的(de)極化行為
不同交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)電(dian)流(liu)(liu)(liu)密度(du)IAC干(gan)擾下試(shi)樣(yang)(yang)(yang)的(de)極(ji)(ji)化曲線如圖(tu)3所示。可(ke)見(jian),交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)電(dian)干(gan)擾使自腐蝕(shi)電(dian)位(wei)(wei)和(he)極(ji)(ji)化曲線偏移(yi)。無交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)干(gan)擾時(shi),自腐蝕(shi)電(dian)位(wei)(wei)為-0.599 V;IAC較小時(shi),隨(sui)交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)干(gan)擾電(dian)流(liu)(liu)(liu)密度(du)的(de)增(zeng)加試(shi)樣(yang)(yang)(yang)的(de)自腐蝕(shi)電(dian)位(wei)(wei) (Ecorr) 負(fu)移(yi)。IAC為100 A/m2時(shi),Ecorr為-0.909 V。IAC為300 A/m2時(shi),自腐蝕(shi)電(dian)位(wei)(wei)正(zheng)向移(yi)動(dong)。隨(sui)IAC增(zeng)大,陰(yin)極(ji)(ji)電(dian)流(liu)(liu)(liu)和(he)陽(yang)極(ji)(ji)電(dian)流(liu)(liu)(liu)增(zeng)加,腐蝕(shi)電(dian)流(liu)(liu)(liu)增(zeng)大,反應(ying)處于(yu)(yu)混合(he)控制下,試(shi)樣(yang)(yang)(yang)表(biao)面溶液中Fe2+和(he)O2的(de)濃度(du)會(hui)影響試(shi)樣(yang)(yang)(yang)的(de)腐蝕(shi)速率[11,16,17]。動(dong)態(tai)交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)干(gan)擾也(ye)涉及氧的(de)消耗(hao)(hao)和(he)擴散[15],陰(yin)極(ji)(ji)保(bao)護電(dian)流(liu)(liu)(liu)導致氧的(de)還原(yuan)消耗(hao)(hao),動(dong)態(tai)交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)干(gan)擾過(guo)程中陰(yin)極(ji)(ji)保(bao)護的(de)周(zhou)期性施加,則Fe2+和(he)O2很難(nan)擴散到樣(yang)(yang)(yang)品(pin)表(biao)面。因此(ci),在這種(zhong)條件下的(de)腐蝕(shi)情(qing)況類(lei)似于(yu)(yu)穩定交(jiao)(jiao)(jiao)(jiao)流(liu)(liu)(liu)干(gan)擾[18]。
圖3 試樣在(zai)不同交流電流密度干(gan)擾水平下的極化曲線(xian)
陰(yin)極(ji)保(bao)護管道(dao)鋼試樣施(shi)加100和(he)300 A/m2的(de)動態交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)時(shi)(shi)電(dian)(dian)位(wei)變化(hua)如圖4所示。施(shi)加100和(he)300 A/m2交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)時(shi)(shi),試樣交(jiao)流(liu)(liu)(liu)電(dian)(dian)位(wei)分(fen)別為(wei)(wei)15.3和(he)22.6 V。動態交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)使試樣保(bao)護電(dian)(dian)位(wei)負向(xiang)(xiang)偏移(yi)(yi),100 A/m2交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)施(shi)加瞬(shun)間試樣出現一較大負向(xiang)(xiang)電(dian)(dian)位(wei)脈沖,電(dian)(dian)位(wei)負向(xiang)(xiang)偏移(yi)(yi)較大,而后電(dian)(dian)位(wei)逐步升高,干(gan)擾(rao)(rao)停止后電(dian)(dian)位(wei)繼續上(shang)升。300 A/m2交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)時(shi)(shi)電(dian)(dian)位(wei)向(xiang)(xiang)負向(xiang)(xiang)偏移(yi)(yi),干(gan)擾(rao)(rao)停止時(shi)(shi)電(dian)(dian)位(wei)出現負向(xiang)(xiang)脈沖,而后逐步上(shang)升。兩(liang)種(zhong)交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)均顯著(zhu)增大了試樣的(de)陰(yin)極(ji)保(bao)護電(dian)(dian)流(liu)(liu)(liu)密度ICP。無(wu)交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)時(shi)(shi)ICP約為(wei)(wei)0.09,100和(he)300 A/m2交(jiao)流(liu)(liu)(liu)干(gan)擾(rao)(rao)下ICP分(fen)別為(wei)(wei)0.19和(he)23.1 A/m2。
圖4 動態交(jiao)流(liu)干擾下管道鋼試樣的(de)陰(yin)極保護(hu)電位和(he)交(jiao)流(liu)電壓(ya)的(de)變化
2.2 動態交流干擾下管道鋼腐蝕產(chan)物分(fen)析
無陰(yin)極保護動態(tai)交(jiao)流(liu)(liu)干(gan)擾5 d后表面(mian)腐蝕產物(wu)形貌示(shi)于圖5。試樣(yang)(yang)表面(mian)腐蝕產物(wu)主要呈顆粒狀(zhuang)和鱗片(pian)狀(zhuang)[19]。XRD分(fen)析 (圖6) 表明(ming),腐蝕產物(wu)主要成分(fen)為γ-FeOOH、Fe3O4和Fe2O3[20]。腐蝕產物(wu)隨干(gan)擾電流(liu)(liu)的增加(jia)而增加(jia),腐蝕產物(wu)表面(mian)均存在局部開裂現象,這可能是由于試樣(yang)(yang)表面(mian)干(gan)濕交(jiao)替的環境所導致(zhi)。電流(liu)(liu)使試樣(yang)(yang)表面(mian)的水分(fen)蒸發,但(dan)動態(tai)交(jiao)流(liu)(liu)干(gan)擾間隔時,溶液又擴散到(dao)試樣(yang)(yang)表面(mian),形成干(gan)濕交(jiao)替環境。
圖5 無陰(yin)極保護管道(dao)鋼(gang)試樣動態交(jiao)流干擾(rao)試驗后(hou)表(biao)面腐蝕產物形貌
圖6 試樣表面(mian)腐蝕產物XRD譜(pu)
石(shi)英(ying)砂(sha)中(zhong)陰極保護試樣(yang)動態交(jiao)流(liu)(liu)干(gan)擾(rao)實(shi)驗5 d后(hou)試樣(yang)的宏觀照片和SEM形(xing)貌分別示于圖7和8。試樣(yang)表(biao)面的白色(se)顆粒是石(shi)英(ying)砂(sha),動態交(jiao)流(liu)(liu)干(gan)擾(rao)下(xia),試樣(yang)表(biao)面產(chan)(chan)(chan)(chan)生一些黑色(se)和黃棕色(se)腐(fu)蝕(shi)(shi)產(chan)(chan)(chan)(chan)物(wu)。圖8顯(xian)示腐(fu)蝕(shi)(shi)產(chan)(chan)(chan)(chan)物(wu)分為(wei)兩層,其中(zhong)底部腐(fu)蝕(shi)(shi)產(chan)(chan)(chan)(chan)物(wu)為(wei)黑色(se),而上(shang)層為(wei)黃褐色(se)。隨(sui)著交(jiao)流(liu)(liu)干(gan)擾(rao)電(dian)流(liu)(liu)密(mi)度的增加(jia),表(biao)面腐(fu)蝕(shi)(shi)產(chan)(chan)(chan)(chan)物(wu)變厚,表(biao)明(ming)施加(jia)動態交(jiao)流(liu)(liu)干(gan)擾(rao)會(hui)加(jia)速試樣(yang)的腐(fu)蝕(shi)(shi)。去除(chu)腐(fu)蝕(shi)(shi)產(chan)(chan)(chan)(chan)物(wu)后(hou)可(ke)以(yi)明(ming)顯(xian)看出大電(dian)流(liu)(liu)密(mi)度交(jiao)流(liu)(liu)干(gan)擾(rao)下(xia)點蝕(shi)(shi)坑更深。
圖7 陰極保護管道鋼動態交流干擾X65鋼試(shi)驗后試(shi)樣宏觀形貌
圖8 陰極(ji)保護管道鋼(gang)動(dong)態(tai)交流(liu)干擾試驗后(hou)試樣表(biao)面腐(fu)蝕產物形(xing)貌
2.3 動(dong)態交流(liu)干擾管道鋼腐蝕(shi)形(xing)貌
4種實驗條(tiao)件(jian)(jian)試(shi)樣(yang)去除腐蝕(shi)產(chan)物后的表(biao)面腐蝕(shi)形貌示于圖9。可(ke)見,隨干擾電(dian)流密度(du)增加,試(shi)樣(yang)表(biao)面腐蝕(shi)程度(du)增加,點(dian)蝕(shi)坑明顯加深(shen)。陰極保(bao)護使(shi)管道鋼試(shi)樣(yang)的腐蝕(shi)速(su)率明顯降低,但點(dian)蝕(shi)坑深(shen)度(du)與無陰極保(bao)護條(tiao)件(jian)(jian)相比未(wei)見顯著減小。
圖(tu)9 動態交流干擾試驗后(hou)管道鋼試樣表面(mian)腐蝕形貌(mao)SEM圖(tu)
使用(yong)激(ji)光共焦(jiao)掃描(miao)電子(zi)顯微鏡 (CLSM) 對點蝕形態進行表征,如圖10所示。100和(he)300 A/m2干擾下,無陰(yin)極保護時的最(zui)大點蝕坑深分(fen)別為(wei)45.7和(he) 61.1 μm;而(er)施(shi)加陰(yin)極保護時的最(zui)大點蝕坑深分(fen)別為(wei)38.9和(he)57.9 μm。
圖(tu)10 動(dong)態交(jiao)流干擾(rao)試驗后管(guan)道鋼(gang)試樣(yang)表面腐(fu)蝕坑CLSM形貌圖(tu)
由失重法計算得(de)管道鋼(gang)試(shi)樣的(de)(de)腐蝕(shi)速(su)(su)(su)率(lv)(lv)數值列于表1。100和(he)300 A/m2動(dong)態交流(liu)(liu)干擾下,無陰(yin)極(ji)(ji)(ji)保(bao)護試(shi)樣腐蝕(shi)速(su)(su)(su)率(lv)(lv)分(fen)別(bie)為0.046和(he)0.195 mm/a;而(er)施加陰(yin)極(ji)(ji)(ji)保(bao)護試(shi)樣的(de)(de)腐蝕(shi)速(su)(su)(su)率(lv)(lv)分(fen)別(bie)為0.024 mm/a (<0.025 mm/a) 和(he)0.092 mm/a (>0.025 mm/a)。腐蝕(shi)速(su)(su)(su)率(lv)(lv)隨交流(liu)(liu)干擾電(dian)流(liu)(liu)密(mi)度的(de)(de)增(zeng)加而(er)增(zeng)加,干擾電(dian)流(liu)(liu)密(mi)度300 A/m2下試(shi)樣腐蝕(shi)速(su)(su)(su)率(lv)(lv)約是100 A/m2時的(de)(de)3倍;相同(tong)水平交流(liu)(liu)干擾條件下,無陰(yin)極(ji)(ji)(ji)保(bao)護試(shi)樣的(de)(de)腐蝕(shi)速(su)(su)(su)率(lv)(lv)約是陰(yin)極(ji)(ji)(ji)保(bao)護試(shi)樣的(de)(de)2倍。
據NACE SP0169-2013 (埋(mai)地或水下金屬管道系統(tong)的(de)外腐(fu)(fu)蝕(shi)控制) 準則中規定的(de)0.025 mm/a的(de)腐(fu)(fu)蝕(shi)速率限(xian)值,本實驗條件(jian)下,-1.0 V陰極保護(hu)電位可有效(xiao)保護(hu)干擾(rao)水平低(di)于(yu)100 A/m2的(de)動態交(jiao)流干擾(rao),而(er)不(bu)能有效(xiao)保護(hu)300 A/m2水平的(de)動態交(jiao)流干擾(rao)。
2.4 動態交(jiao)流干擾下(xia)管道鋼腐蝕機理分析
交(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)是以一定頻率周(zhou)期性(xing)交(jiao)(jiao)替變化(hua)(hua)(hua)(hua)(hua)的(de)(de)陽極(ji)(ji)(ji)和(he)陰極(ji)(ji)(ji)電(dian)(dian)(dian)流(liu)(liu)。交(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)的(de)(de)正半(ban)周(zhou)期內(nei)產(chan)生(sheng)陽極(ji)(ji)(ji)電(dian)(dian)(dian)流(liu)(liu)對管(guan)道(dao)進行陽極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)(hua)(hua)(hua)(hua),管(guan)道(dao)金(jin)屬(shu)被(bei)氧(yang)化(hua)(hua)(hua)(hua)(hua),表(biao)面(mian)生(sheng)成(cheng)鈍(dun)化(hua)(hua)(hua)(hua)(hua)膜(mo)(mo) (如Fe2O3);交(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)負半(ban)周(zhou)期內(nei)過多的(de)(de)陰極(ji)(ji)(ji)電(dian)(dian)(dian)流(liu)(liu)對管(guan)道(dao)進行陰極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)(hua)(hua)(hua)(hua),促使(shi)點蝕(shi)電(dian)(dian)(dian)位負向(xiang)偏(pian)移并使(shi)電(dian)(dian)(dian)極(ji)(ji)(ji)表(biao)面(mian)膜(mo)(mo)層(ceng)的(de)(de)狀態發生(sheng)改變,鈍(dun)化(hua)(hua)(hua)(hua)(hua)膜(mo)(mo)被(bei)還(huan)原成(cheng)非保護性(xing)的(de)(de)二(er)價多孔氫氧(yang)化(hua)(hua)(hua)(hua)(hua)物(wu)(wu)(wu)(wu)(wu)膜(mo)(mo)層(ceng),如Fe(OH)2,此腐(fu)(fu)蝕(shi)產(chan)物(wu)(wu)(wu)(wu)(wu)層(ceng)沒有保護作(zuo)用且膜(mo)(mo)層(ceng)可(ke)能不會(hui)再次轉換為(wei)鈍(dun)化(hua)(hua)(hua)(hua)(hua)膜(mo)(mo),且腐(fu)(fu)蝕(shi)產(chan)物(wu)(wu)(wu)(wu)(wu)在(zai)管(guan)道(dao)鋼(gang)表(biao)面(mian)的(de)(de)粘(zhan)附(fu)狀態會(hui)在(zai)交(jiao)(jiao)變電(dian)(dian)(dian)場(chang)的(de)(de)影(ying)響下發生(sheng)變化(hua)(hua)(hua)(hua)(hua),從(cong)而導(dao)(dao)致腐(fu)(fu)蝕(shi)產(chan)物(wu)(wu)(wu)(wu)(wu)膜(mo)(mo)變松并且孔隙率增加(jia)[21]。在(zai)接下來的(de)(de)循(xun)環過程中(zhong),隨著鋼(gang)電(dian)(dian)(dian)極(ji)(ji)(ji)表(biao)面(mian)鈍(dun)化(hua)(hua)(hua)(hua)(hua)膜(mo)(mo)的(de)(de)氧(yang)化(hua)(hua)(hua)(hua)(hua)和(he)還(huan)原,金(jin)屬(shu)和(he)氫氧(yang)化(hua)(hua)(hua)(hua)(hua)物(wu)(wu)(wu)(wu)(wu)之(zhi)間生(sheng)成(cheng)新的(de)(de)鈍(dun)化(hua)(hua)(hua)(hua)(hua)膜(mo)(mo)[22],Fe2+被(bei)還(huan)原且反應(ying)不可(ke)逆,每(mei)一循(xun)環都導(dao)(dao)致腐(fu)(fu)蝕(shi)產(chan)物(wu)(wu)(wu)(wu)(wu)產(chan)生(sheng),結(jie)果管(guan)道(dao)基(ji)體不斷(duan)被(bei)氧(yang)化(hua)(hua)(hua)(hua)(hua)腐(fu)(fu)蝕(shi)。
陰極保(bao)護(hu)作(zuo)(zuo)用下(xia),形成高pH局部環(huan)境,管道(dao)鋼(gang)表(biao)面可(ke)形成鈍(dun)化(hua)(hua)膜,而(er)當陰極保(bao)護(hu)和(he)(he)交(jiao)流(liu)(liu)干擾共同作(zuo)(zuo)用時,交(jiao)流(liu)(liu)電(dian)(dian)流(liu)(liu)提高了(le)腐(fu)蝕電(dian)(dian)流(liu)(liu)的密度、減(jian)少(shao)膜層厚度、降低穩定性。同時瞬時變化(hua)(hua)的電(dian)(dian)位在膜層表(biao)面電(dian)(dian)場(chang)和(he)(he)界面張力的作(zuo)(zuo)用下(xia)導致鈍(dun)化(hua)(hua)膜的機械破損(sun),影(ying)響鈍(dun)化(hua)(hua)膜的致密性,使(shi)無保(bao)護(hu)的鋼(gang)基(ji)底直(zhi)接暴露在腐(fu)蝕離子中加速(su)管道(dao)的腐(fu)蝕。
3 結(jie)論(lun)
(1) 施加交流(liu)干(gan)擾(rao)電(dian)流(liu)時,管道鋼試樣陰(yin)極(ji)保(bao)護電(dian)位向負方向偏移。隨交流(liu)干(gan)擾(rao)電(dian)流(liu)密度(du)的增加,促進陽極(ji)和陰(yin)極(ji)反應,導致腐(fu)蝕電(dian)流(liu)增加。交流(liu)干(gan)擾(rao)增大管道的陰(yin)極(ji)保(bao)護電(dian)流(liu)密度(du)。
(2) 動態(tai)交(jiao)流(liu)干擾下,管(guan)道鋼(gang)試樣腐(fu)蝕產物(wu)主(zhu)要(yao)為(wei)顆(ke)粒狀和(he)鱗片狀,主(zhu)要(yao)成分為(wei)γ-FeOOH、Fe3O4和(he)Fe2O3。隨干擾水平增加,管(guan)道鋼(gang)腐(fu)蝕程度增加,點蝕坑(keng)明顯(xian)加深(shen)。
(3) 動態交(jiao)流(liu)干擾下,陰(yin)極(ji)保(bao)(bao)(bao)護試(shi)樣(yang)的交(jiao)流(liu)腐(fu)蝕(shi)(shi)程度(du)明顯減緩,腐(fu)蝕(shi)(shi)速率(lv)約為不(bu)施加陰(yin)極(ji)保(bao)(bao)(bao)護的一半(ban)。本(ben)實驗條件下,-1.0 V陰(yin)極(ji)保(bao)(bao)(bao)護電(dian)位可(ke)以(yi)有效保(bao)(bao)(bao)護100 A/m2水平(ping)的動態交(jiao)流(liu)干擾,但(dan)不(bu)能保(bao)(bao)(bao)護300 A/m2水平(ping)的動態交(jiao)流(liu)干擾。
(4) 交(jiao)流(liu)(liu)干擾下(xia),陰極(ji)保護狀(zhuang)態下(xia)的管道鋼(gang)發(fa)生(sheng)局部陽極(ji)溶(rong)解(jie),這歸因于交(jiao)流(liu)(liu)電(dian)流(liu)(liu)正半周(zhou)期(qi)中產(chan)生(sheng)的陽極(ji)電(dian)流(liu)(liu)優先腐蝕(shi)鋼(gang)表(biao)面(mian)的活性部位破壞(huai)金屬鈍(dun)化膜(mo),進而導致局部腐蝕(shi)。交(jiao)流(liu)(liu)干擾情況下(xia),即使符合陰極(ji)保護標(biao)準,也(ye)可(ke)能發(fa)生(sheng)腐蝕(shi)。
參考文獻
1 Matta V, Kumar G. Unbalance and voltage fluctuation study on AC traction system [A]. Electric Power Quality and Supply Reliability [C]. Chennai, India, 2014: 315
2 Mariscotti A. Distribution of the traction return current in AC and DC electric railway systems [J]. IEEE Trans. Power Deliv., 2003, 18: 1422
3 Ouadah M, Touhami O, Ibtiouen R, et al. Corrosive effects of the electromagnetic induction caused by the high voltage power lines on buried X70 steel pipelines [J]. Int. J. Elec. Power, 2017, 91: 34
4 Charalambous C A, Demetriou A, Lazari A L, et al. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics [J]. IEEE Trans. Power Deliv., 2018, 33: 2664
5 Brenna A, Ormellese M, Lazzari L. Electromechanical breakdown mechanism of passive film in alternating current-related corrosion of carbon steel under cathodic protection condition [J]. Corrosion, 2016, 72: 1055
6 Micu D D, Christoforidis G C, Czumbil L. AC interference on pipelines due to double circuit power lines: A detailed study [J]. Electr. Power Syst. Res., 2013, 103: 1
7 Funk D, Schoeneich H G. Probleme bei der Bewertung der Wechselstrom-Korrosions-gefaehrdung von Rohrleitungen mit Probeblechen [J]. 3R International, 2002, 41: 582
8 Floyd R. Testing and mitigation of AC corrosion on 8 Line: A field study [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
9 Liang Y, Du Y X. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC Interference [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 215
9 梁毅, 杜艷霞(xia). 交(jiao)流干擾和陰極保(bao)護(hu)(hu)協(xie)同作用下的腐(fu)蝕評判標準(zhun)與(yu)機(ji)理研究進展 [J]. 中國腐(fu)蝕與(yu)防護(hu)(hu)學報, 2020, 40: 215
10 Hanson H R, Smart J. AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
11 Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 341
11 王曉霖, 閆(yan)茂(mao)成, 舒韻等. 破損涂層(ceng)下(xia)管線(xian)鋼的交流電干擾腐蝕(shi)行(xing)為 [J]. 中(zhong)國(guo)腐蝕(shi)與防護學報, 2017, 37: 341
12 Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
13 Song H S, Kho Y T, Kim Y G, et al. Competition of AC and DC current in AC corrosion under cathodic protection [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
14 Weng Y J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270
14 翁永基(ji), 王寧. 碳鋼交流電(dian)腐蝕(shi)機理的探討 [J]. 中國腐蝕(shi)與防護學報(bao), 2011, 31: 270
15 Büchler M. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values [J]. Mater. Corros., 2012, 63: 1181
16 Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion [J]. Corros. Sci., 2008, 50: 1664
17 Ghanbari E, Iannuzzi M, Lillard R S. The mechanism of alternating current corrosion of API grade X65 pipeline steel [J]. Corrosion, 2016, 72: 1196
18 Chen L, Du Y X, Liang Y, et al. Research on corrosion behaviour of X65 pipeline steel under dynamic AC interference [J]. Corros. Eng. Sci. Technol., 2021, 56: 219
19 Wang X H, Yang Y, Chen Y C, et al. Effect of alternating current on corrosion behavior of X100 pipeline steel in a simulated solution for soil medium at Korla district [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 259
19 王新華, 楊永, 陳迎春等. 交流電流對X100管(guan)線鋼(gang)在庫爾勒土壤模(mo)擬液(ye)中(zhong)腐蝕行為的影響(xiang) [J]. 中(zhong)國腐蝕與防護(hu)學(xue)報, 2020, 40: 259
20 Xiao Y W, Du Y X, Tang D Z, et al. Study on the influence of environmental factors on AC corrosion behavior and its mechanism [J]. Mater. Corros., 2018, 69: 601
21 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
21 萬(wan)紅霞(xia), 宋東(dong)東(dong), 劉智勇等. 交(jiao)流電對X80鋼在(zai)近中性環境中腐蝕行(xing)為的(de)影(ying)響 [J]. 金(jin)屬學報, 2017, 53: 575
22 Büchler M, Scho?neich H G. Investigation of alternating current corrosion of cathodically protected pipelines: Development of a detection method, mitigation measures, and a model for the mechanism [J]. Corrosion, 2009, 65: 578