无码精品人妻一区二区三区影院_国产乱子经典视频在线观看_亚洲国产精品sss在线观看av_国产国语在线播放视频

硫酸鹽還原菌對鋼材腐蝕行為的研究進展

2021-06-21 07:41:23 hualin

摘要:綜述了(le)硫酸(suan)鹽還(huan)原菌(jun)(SRB)微生(sheng)(sheng)物腐(fu)(fu)蝕(shi)與防護的(de)(de)研(yan)究(jiu)現狀,總(zong)結(jie)了(le)厭(yan)氧(yang)生(sheng)(sheng)物膜的(de)(de)形 成過程(cheng)及(ji)對(dui)鋼材腐(fu)(fu)蝕(shi)的(de)(de)影響,并(bing)(bing)在(zai)(zai)此基礎上介紹了(le) SRB 對(dui)金(jin)屬(shu)材料的(de)(de)腐(fu)(fu)蝕(shi)機理,包括陰極去 極化機理、代(dai)謝(xie)產(chan)物腐(fu)(fu)蝕(shi)機理、Fe/FeS 微電池作(zuo)(zuo)用機理等。分析(xi)了(le) SRB 代(dai)謝(xie)產(chan)生(sheng)(sheng)的(de)(de)胞外聚 合物(EPS)在(zai)(zai)金(jin)屬(shu)腐(fu)(fu)蝕(shi)過程(cheng)中(zhong)起到的(de)(de)作(zuo)(zuo)用,并(bing)(bing)詳(xiang)細介紹了(le) SRB 與好氧(yang)型鐵氧(yang)化菌(jun)(IOB)、 典型腐(fu)(fu)蝕(shi)性(xing)陰離子(Cl/SO42)、彈性(xing)應力以及(ji)酸(suan)性(xing)氣體 CO2之間的(de)(de)微生(sheng)(sheng)物腐(fu)(fu)蝕(shi)協同作(zuo)(zuo)用。最后系統總(zong)結(jie)了(le) SRB 腐(fu)(fu)蝕(shi)研(yan)究(jiu)中(zhong)較(jiao)為普遍的(de)(de)防腐(fu)(fu)蝕(shi)手段(duan)以及(ji)最新研(yan)究(jiu)進展,從(cong)而為后續 SRB 腐(fu)(fu)蝕(shi)與防護提供參考。

關鍵(jian)詞:微生物腐(fu)蝕(shi);硫酸(suan)鹽還原菌(SRB);胞外聚合物(EPS);協同作(zuo)用(yong);腐(fu)蝕(shi)控制

微(wei)(wei)(wei)(wei)生(sheng)物(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(MIC)可(ke)以(yi)通(tong)過(guo)依(yi)靠(kao)微(wei)(wei)(wei)(wei)生(sheng)物(wu)自(zi)身的(de)(de)(de)(de)(de)生(sheng)命活(huo)動及(ji)其(qi)代(dai)謝(xie)(xie)產(chan)物(wu)的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)作(zuo)(zuo)用直接(jie)(jie)或間接(jie)(jie)地影(ying)(ying)響(xiang)金(jin)(jin)屬(shu)(shu)(shu)材(cai)料(liao)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)過(guo)程(cheng)(cheng)[1] 。MIC 的(de)(de)(de)(de)(de)本質是(shi)(shi)電化學腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),并且在(zai)非生(sheng)物(wu)的(de)(de)(de)(de)(de)作(zuo)(zuo)用過(guo)程(cheng)(cheng)中引(yin)入了生(sheng)物(wu)因(yin)素的(de)(de)(de)(de)(de)影(ying)(ying)響(xiang),其(qi)常見的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)形式是(shi)(shi)點蝕(shi)(shi)(shi)(shi)(shi)[2] 。MIC 可(ke)直接(jie)(jie)從金(jin)(jin)屬(shu)(shu)(shu)表(biao)面獲取電子,來(lai)(lai)加速(su)金(jin)(jin)屬(shu)(shu)(shu)的(de)(de)(de)(de)(de)溶解,其(qi)目的(de)(de)(de)(de)(de)是(shi)(shi)為了獲得能量[3] 。微(wei)(wei)(wei)(wei)生(sheng)物(wu)通(tong)過(guo)在(zai)生(sheng)物(wu)膜(mo)下的(de)(de)(de)(de)(de)富集(ji)和(he)生(sheng)長,能直接(jie)(jie)加速(su)金(jin)(jin)屬(shu)(shu)(shu)基體的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),由其(qi)引(yin)起(qi)的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)約(yue)占腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)總量的(de)(de)(de)(de)(de)20%以(yi)上,造成的(de)(de)(de)(de)(de)經濟損(sun)失巨(ju)大[4] 。近(jin)年來(lai)(lai)有關(guan)微(wei)(wei)(wei)(wei)生(sheng)物(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與(yu)防(fang)護研(yan)(yan)究(jiu)較多的(de)(de)(de)(de)(de)是(shi)(shi)硫(liu)(liu)酸鹽還原菌(SRB),作(zuo)(zuo)為典型的(de)(de)(de)(de)(de)厭氧型腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)微(wei)(wei)(wei)(wei)生(sheng)物(wu),它(ta)能夠把 SO42-還原成 H2S 來(lai)(lai)獲得能量[5],也是(shi)(shi)對(dui)材(cai)料(liao)(包括金(jin)(jin)屬(shu)(shu)(shu)材(cai)料(liao)和(he)非金(jin)(jin)屬(shu)(shu)(shu)材(cai)料(liao))腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)貢獻較大的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)性(xing)微(wei)(wei)(wei)(wei)生(sheng)物(wu)之一。研(yan)(yan)究(jiu)發現,70%的(de)(de)(de)(de)(de)微(wei)(wei)(wei)(wei)生(sheng)物(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)都是(shi)(shi)由 SRB 造成的(de)(de)(de)(de)(de),其(qi)廣泛存(cun)在(zai)于海(hai)水、土(tu)壤(rang)、油(you)井和(he)油(you)氣運輸管道內[6] ,SRB 在(zai)新陳代(dai)謝(xie)(xie)過(guo)程(cheng)(cheng)中產(chan)生(sheng)的(de)(de)(de)(de)(de)具有強腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)性(xing)的(de)(de)(de)(de)(de)硫(liu)(liu)化物(wu)會影(ying)(ying)響(xiang)金(jin)(jin)屬(shu)(shu)(shu)表(biao)面膜(mo)電阻的(de)(de)(de)(de)(de)變化[7]。隨著對(dui)微(wei)(wei)(wei)(wei)生(sheng)物(wu)尤其(qi)是(shi)(shi) SRB 研(yan)(yan)究(jiu)的(de)(de)(de)(de)(de)不(bu)斷深入,目前已發現 SRB 存(cun)在(zai)著促進或抑制金(jin)(jin)屬(shu)(shu)(shu)材(cai)料(liao)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)作(zuo)(zuo)用,而這兩種作(zuo)(zuo)用效果與(yu)生(sheng)物(wu)膜(mo)的(de)(de)(de)(de)(de)形成及(ji)其(qi)代(dai)謝(xie)(xie)產(chan)物(wu)密切相關(guan)。

鋼(gang)(gang)材在(zai)(zai)石油(you)化工行(xing)(xing)業(ye)的(de)(de)(de)(de)(de)(de)使(shi)用(yong)量(liang)(liang)(liang)大于 90%,被稱為“工業(ye)的(de)(de)(de)(de)(de)(de)骨骼(ge)”,微生(sheng)(sheng)物(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)是(shi)鋼(gang)(gang)材的(de)(de)(de)(de)(de)(de)主要腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)形(xing)式(shi)之一,也(ye)是(shi)目前最受(shou)關注和(he)研(yan)究(jiu)的(de)(de)(de)(de)(de)(de)熱點課題[8]。碳(tan)(tan)鋼(gang)(gang)是(shi)一種(zhong)(zhong)典型的(de)(de)(de)(de)(de)(de)鋼(gang)(gang)材,其在(zai)(zai)不(bu)(bu)同(tong)環境(jing)下易受(shou)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)影響而(er)造成(cheng)失(shi)效,近(jin)幾(ji)年有(you)關 SRB 對(dui)碳(tan)(tan)鋼(gang)(gang)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)(xing)為的(de)(de)(de)(de)(de)(de)研(yan)究(jiu)較多。劉靖等(deng)(deng)[9]采(cai)用(yong)電(dian)(dian)(dian)化學(xue)(xue)阻(zu)抗(kang)譜(EIS)分(fen)析(xi)了(le)碳(tan)(tan)鋼(gang)(gang)在(zai)(zai)含(han)(han)有(you) SRB 環境(jing)下的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)(xing)為,結果發(fa)(fa)現(xian)(xian)(xian)在(zai)(zai)碳(tan)(tan)鋼(gang)(gang)表(biao)(biao)面(mian)(mian)(mian)形(xing)成(cheng)的(de)(de)(de)(de)(de)(de) SRB 生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)使(shi)得碳(tan)(tan)鋼(gang)(gang)表(biao)(biao)面(mian)(mian)(mian)的(de)(de)(de)(de)(de)(de)微環境(jing)發(fa)(fa)生(sheng)(sheng)了(le)改變(bian),從(cong)而(er)促進(jin)碳(tan)(tan)鋼(gang)(gang)點蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)發(fa)(fa)生(sheng)(sheng)。但該(gai)研(yan)究(jiu)中(zhong)(zhong)只是(shi)采(cai)用(yong)了(le)單一掃描電(dian)(dian)(dian)鏡(SEM)對(dui)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)產物(wu)(wu)(wu)的(de)(de)(de)(de)(de)(de)表(biao)(biao)面(mian)(mian)(mian)形(xing)貌進(jin)行(xing)(xing)觀(guan)察(cha),缺少(shao)對(dui)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)產物(wu)(wu)(wu)的(de)(de)(de)(de)(de)(de)組成(cheng)(元素(su)/相)分(fen)析(xi)。馬磊(lei)等(deng)(deng)[10]通(tong)過采(cai)用(yong)電(dian)(dian)(dian)化學(xue)(xue)方法研(yan)究(jiu)了(le)在(zai)(zai)不(bu)(bu)同(tong)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)介質條件下 SRB對(dui)碳(tan)(tan)鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)(xing)為,實驗結果表(biao)(biao)明(ming) SRB 對(dui)碳(tan)(tan)鋼(gang)(gang)有(you)明(ming)顯的(de)(de)(de)(de)(de)(de)加(jia)速(su)(su)(su)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)作用(yong),而(er)且(qie)(qie)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)形(xing)貌以(yi)點蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)為主。有(you)研(yan)究(jiu)發(fa)(fa)現(xian)(xian)(xian)[11]材料(liao)表(biao)(biao)面(mian)(mian)(mian)出現(xian)(xian)(xian)點蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)坑。Fan 等(deng)(deng)[12]鋼(gang)(gang)在(zai)(zai)接種(zhong)(zhong)了(le) SRB 的(de)(de)(de)(de)(de)(de)飽和(he) CO2油(you)田注入水(shui)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)(xing)為,結果表(biao)(biao)明(ming) SRB 生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)中(zhong)(zhong)分(fen)散的(de)(de)(de)(de)(de)(de) Fe2S3,SRB 存在(zai)(zai)時也(ye)會(hui)導致(zhi)并(bing)加(jia)速(su)(su)(su)石油(you)天然氣輸送和(he)海(hai)(hai)底管線鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi),使(shi)利用(yong)動電(dian)(dian)(dian)位(wei)極化曲線(PDP)和(he)電(dian)(dian)(dian)化學(xue)(xue)阻(zu)抗(kang)譜(EIS)研(yan)究(jiu)了(le) X60與(yu)X60 鋼(gang)(gang)基(ji)體(ti)可(ke)(ke)能(neng)形(xing)成(cheng)電(dian)(dian)(dian)偶,從(cong)而(er)加(jia)速(su)(su)(su)鋼(gang)(gang)基(ji)體(ti)的(de)(de)(de)(de)(de)(de)局(ju)(ju)部(bu)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)。然而(er),該(gai)研(yan)究(jiu)并(bing)沒有(you)對(dui)碳(tan)(tan)鋼(gang)(gang)在(zai)(zai) CO2和(he) SRB 共存環境(jing)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)機理進(jin)行(xing)(xing)分(fen)析(xi),對(dui) SRB 的(de)(de)(de)(de)(de)(de)作用(yong)機理有(you)必(bi)要進(jin)一步探究(jiu)。葛嵐等(deng)(deng)[13]通(tong)過改變(bian)接種(zhong)(zhong)到模擬海(hai)(hai)水(shui)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de) SRB 數(shu)量(liang)(liang)(liang),結果發(fa)(fa)現(xian)(xian)(xian) X70 鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)自(zi)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)電(dian)(dian)(dian)流密(mi)度隨著 SRB 數(shu)量(liang)(liang)(liang)的(de)(de)(de)(de)(de)(de)增(zeng)加(jia)而(er)增(zeng)大,且(qie)(qie)試樣鋼(gang)(gang)表(biao)(biao)面(mian)(mian)(mian)有(you)點蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)坑出現(xian)(xian)(xian)。Zhai 等(deng)(deng)[14]通(tong)過采(cai)用(yong)電(dian)(dian)(dian)化學(xue)(xue)測試方法研(yan)究(jiu)了(le) 2507雙相不(bu)(bu)銹(xiu)鋼(gang)(gang)浸(jin)泡在(zai)(zai)不(bu)(bu)同(tong)含(han)(han)量(liang)(liang)(liang)的(de)(de)(de)(de)(de)(de) SRB 冷卻(que)水(shui)模擬溶液中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)(xing)為,結果表(biao)(biao)明(ming)不(bu)(bu)銹(xiu)鋼(gang)(gang)在(zai)(zai)含(han)(han)2%SRB 溶液中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)速(su)(su)(su)率提高了(le) 4%以(yi)上,而(er)且(qie)(qie) SRB 生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)的(de)(de)(de)(de)(de)(de)形(xing)成(cheng)也(ye)會(hui)使(shi)不(bu)(bu)銹(xiu)鋼(gang)(gang)表(biao)(biao)面(mian)(mian)(mian)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)傾向(xiang)增(zeng)大。Ohashi 等(deng)(deng)[15]研(yan)究(jiu)了(le) 5 種(zhong)(zhong)不(bu)(bu)銹(xiu)鋼(gang)(gang)材料(liao)在(zai)(zai) SRB 生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)存在(zai)(zai)和(he)無菌(jun)條件下的(de)(de)(de)(de)(de)(de)海(hai)(hai)洋縫隙腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi),研(yan)究(jiu)發(fa)(fa)現(xian)(xian)(xian)暴露于生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)環境(jing)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)各雙相合(he)金(jin)上觀(guan)察(cha)到的(de)(de)(de)(de)(de)(de)縫隙腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)量(liang)(liang)(liang)較大,且(qie)(qie)樣品形(xing)貌損傷相比無菌(jun)條件下的(de)(de)(de)(de)(de)(de)更加(jia)嚴重。由(you)以(yi)上研(yan)究(jiu)也(ye)可(ke)(ke)以(yi)看出,金(jin)屬材料(liao)表(biao)(biao)面(mian)(mian)(mian)的(de)(de)(de)(de)(de)(de) MIC 行(xing)(xing)為往往與(yu)微生(sheng)(sheng)物(wu)(wu)(wu)膜(mo)(mo)的(de)(de)(de)(de)(de)(de)形(xing)成(cheng)密(mi)不(bu)(bu)可(ke)(ke)分(fen),成(cheng)膜(mo)(mo)過程能(neng)夠加(jia)速(su)(su)(su)局(ju)(ju)部(bu)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)發(fa)(fa)生(sheng)(sheng)[16]。

隨著對(dui)(dui)(dui)(dui) SRB 的(de)(de)(de)深入研(yan)究(jiu)(jiu),有(you)(you)研(yan)究(jiu)(jiu)發(fa)現(xian)(xian)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜不(bu)僅能促進(jin)材(cai)(cai)料(liao)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi),在(zai)(zai)一(yi)定(ding)的(de)(de)(de)情(qing)況(kuang)下還可以(yi)抑制(zhi)(zhi)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)進(jin)行(xing)[17, 18],從而(er)減輕對(dui)(dui)(dui)(dui)金屬材(cai)(cai)料(liao)的(de)(de)(de)破壞。許萍等[19]指(zhi)出(chu),有(you)(you)些微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)自(zi)身具有(you)(you)防(fang)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)效果,其生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜的(de)(de)(de)形成(cheng)和(he)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)不(bu)會(hui)引發(fa)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi),反而(er)能夠抑制(zhi)(zhi)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)。Yuan等[20] 研(yan)究(jiu)(jiu)發(fa)現(xian)(xian) SRB 在(zai)(zai)代謝過(guo)程中(zhong)會(hui)產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)大量的(de)(de)(de)侵蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)性硫(liu)化(hua)(hua)物(wu)(wu)(wu),其能與(yu)基體(ti)材(cai)(cai)料(liao)反應產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)一(yi)薄(bo)層鐵(tie)硫(liu)化(hua)(hua)合物(wu)(wu)(wu),從而(er)對(dui)(dui)(dui)(dui)鋼(gang)材(cai)(cai)表(biao)面起到鈍化(hua)(hua)作(zuo)用(yong)并(bing)提供連續保護。吳(wu)亞楠[21]通(tong)(tong)過(guo)采(cai)用(yong)電(dian)(dian)化(hua)(hua)學(xue)方法研(yan)究(jiu)(jiu)了(le)污(wu)水系統中(zhong)的(de)(de)(de) SRB 對(dui)(dui)(dui)(dui)鋼(gang)材(cai)(cai)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)狀況(kuang),結果發(fa)現(xian)(xian) SRB 對(dui)(dui)(dui)(dui) Q235 鋼(gang)管(guan)的(de)(de)(de)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)十(shi)分嚴重,在(zai)(zai)浸(jin)泡初期,SRB 在(zai)(zai)一(yi)定(ding)程度上形成(cheng)的(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜抑制(zhi)(zhi)了(le)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)。劉春(chun)平(ping)等[22] 通(tong)(tong)過(guo)采(cai)用(yong)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)電(dian)(dian)化(hua)(hua)學(xue)方法,研(yan)究(jiu)(jiu)了(le)在(zai)(zai)采(cai)出(chu)水中(zhong)由(you) SRB 繁(fan)殖產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de) S2-對(dui)(dui)(dui)(dui)碳鋼(gang)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)為,結果發(fa)現(xian)(xian)少量的(de)(de)(de) S2- 對(dui)(dui)(dui)(dui)碳鋼(gang)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)有(you)(you)抑制(zhi)(zhi)作(zuo)用(yong), 但并(bing)沒有(you)(you)區分 SRB 自(zi)身產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de) S2-與(yu)直(zhi)接添加的(de)(de)(de)S2-對(dui)(dui)(dui)(dui)碳鋼(gang)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)作(zuo)用(yong)差異,而(er)且后續的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)產(chan)物(wu)(wu)(wu)分析部(bu)分還需作(zuo)進(jin)一(yi)步的(de)(de)(de)解(jie)釋說明(ming)。Qi 等[23]通(tong)(tong)過(guo)在(zai)(zai)循環冷卻水系統中(zhong)添加不(bu)同(tong)化(hua)(hua)學(xue)試劑(ji)研(yan)究(jiu)(jiu)了(le) SRB 在(zai)(zai) 316L 不(bu)銹鋼(gang)表(biao)面的(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜特性和(he)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)行(xing)為,結果發(fa)現(xian)(xian) SRB 生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜能增(zeng)強鋼(gang)表(biao)面鈍化(hua)(hua)膜的(de)(de)(de)保護性,從而(er)延緩了(le)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)。郭章偉等[18]還指(zhi)出(chu)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜抑制(zhi)(zhi)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)三種(zhong)主要機制(zhi)(zhi):(1)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)通(tong)(tong)過(guo)呼吸作(zuo)用(yong)對(dui)(dui)(dui)(dui)氧氣進(jin)行(xing)消耗;(2)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)在(zai)(zai)基體(ti)材(cai)(cai)料(liao)表(biao)面形成(cheng)有(you)(you)效的(de)(de)(de)保護層;(3)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)通(tong)(tong)過(guo)自(zi)身分泌物(wu)(wu)(wu)對(dui)(dui)(dui)(dui)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(shi)(shi)起到抑制(zhi)(zhi)作(zuo)用(yong)。

本(ben)文(wen)基(ji)于SRB引起的典型鋼材(cai)腐蝕(shi)(shi)(shi)行為綜述了近年來(lai)有(you)關SRB腐蝕(shi)(shi)(shi)與防護方面的研(yan)究進展,并介(jie)紹了其與好氧(yang)微生(sheng)物(wu)鐵氧(yang)化(hua)細菌(IOB)之(zhi)間的協(xie)同(tong)作用(yong)。另外,本(ben)文(wen)還綜述了典型的腐蝕(shi)(shi)(shi)性(xing)陰離子(Cl-、SO42-)、彈性(xing)應力以(yi)及(ji)腐蝕(shi)(shi)(shi)性(xing)氣體(ti) CO2與 SRB 之(zhi)間的協(xie)同(tong)作用(yong),以(yi)此(ci)來(lai)探索 SRB 的腐蝕(shi)(shi)(shi)機理并采取(qu)相應的防腐蝕(shi)(shi)(shi)措施(shi),包括(kuo)物(wu)理、化(hua)學、生(sheng)物(wu)和陰極極化(hua)保護等,為今后有(you)效控制由 SRB 引起的金屬材(cai)料腐蝕(shi)(shi)(shi)提供(gong)理論借鑒與參考。

1 SRB 生(sheng)物膜的腐蝕過(guo)程

1.1 微(wei)生物膜(mo)的形成過程  

生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)是一(yi)(yi)群(qun)(qun)聚集在(zai)(zai)一(yi)(yi)起并(bing)(bing)不(bu)(bu)可逆(ni)地(di)吸(xi)附(fu)在(zai)(zai)界面(mian)(mian)(mian)或(huo)基體(ti)表(biao)面(mian)(mian)(mian)上(shang)的(de)(de)(de)(de)固(gu)著(zhu)態微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)群(qun)(qun)落,其對 MIC 行為、菌群(qun)(qun)形(xing)(xing)態等(deng)均有(you)非常重要的(de)(de)(de)(de)影(ying)(ying)響(xiang)(xiang)[24]。黃燁等(deng)[2, 25]指(zhi)出(chu),附(fu)著(zhu)在(zai)(zai)金(jin)屬(shu)表(biao)面(mian)(mian)(mian)形(xing)(xing)成(cheng)(cheng)的(de)(de)(de)(de)微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)可以通過(guo)(guo)四種方(fang)式影(ying)(ying)響(xiang)(xiang)金(jin)屬(shu)的(de)(de)(de)(de)腐蝕(shi)過(guo)(guo)程(cheng):1)影(ying)(ying)響(xiang)(xiang)陽極(ji)或(huo)陰極(ji)變(bian)(bian)化,進(jin)而促(cu)進(jin)電(dian)化學腐蝕(shi);2)改變(bian)(bian)腐蝕(shi)反(fan)應的(de)(de)(de)(de)類型,使腐蝕(shi)速(su)率(lv)加快;3)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)組(zu)織(zhi)結構的(de)(de)(de)(de)形(xing)(xing)成(cheng)(cheng),為生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)創造了有(you)利的(de)(de)(de)(de)腐蝕(shi)環境;4)微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)代謝產生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de)(de)化合物(wu)(wu)(wu)(wu), 促(cu)進(jin)或(huo)抑制金(jin)屬(shu)腐蝕(shi)過(guo)(guo)程(cheng)。楊(yang)家(jia)東等(deng)[26]指(zhi)出(chu),在(zai)(zai)微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)代謝的(de)(de)(de)(de)影(ying)(ying)響(xiang)(xiang)下,生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)的(de)(de)(de)(de)形(xing)(xing)成(cheng)(cheng)一(yi)(yi)般會經歷如圖 1 所示六個階段(duan)[27, 28]:1)在(zai)(zai)有(you)機大分子的(de)(de)(de)(de)吸(xi)附(fu)作用(yong)和(he)無機離子的(de)(de)(de)(de)礦化作用(yong)下,厚度約為 20-80nm 的(de)(de)(de)(de)膜(mo)(mo)(mo)(mo)層將在(zai)(zai)材料表(biao)面(mian)(mian)(mian)形(xing)(xing)成(cheng)(cheng);2)材料基體(ti)表(biao)面(mian)(mian)(mian)上(shang)有(you)浮(fu)游微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)不(bu)(bu)斷(duan)移動(dong);3)微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)在(zai)(zai)材料表(biao)面(mian)(mian)(mian)不(bu)(bu)斷(duan)附(fu)著(zhu),并(bing)(bing)逐漸(jian)適應所處的(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)(chang)環境;4)微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)不(bu)(bu)斷(duan)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)(chang),并(bing)(bing)通過(guo)(guo)自身的(de)(de)(de)(de)代謝活動(dong)產生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)大量的(de)(de)(de)(de)代謝物(wu)(wu)(wu)(wu);5)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)(chang)的(de)(de)(de)(de)過(guo)(guo)程(cheng)中(zhong)慢慢會趨(qu)于成(cheng)(cheng)熟穩(wen)定(ding);6)隨著(zhu)時間的(de)(de)(de)(de)推移,生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)的(de)(de)(de)(de)穩(wen)定(ding)性慢慢下降,而且在(zai)(zai)后(hou)期生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)(chang)過(guo)(guo)程(cheng)中(zhong)會有(you)部分脫落。由此可看(kan)出(chu),生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)(mo)(mo)(mo)是微生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)的(de)(de)(de)(de)一(yi)(yi)種重要聚集生(sheng)(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)(chang)形(xing)(xing)式,其在(zai)(zai)金(jin)屬(shu)表(biao)面(mian)(mian)(mian)的(de)(de)(de)(de)形(xing)(xing)成(cheng)(cheng)和(he)發展也是一(yi)(yi)個相對復雜的(de)(de)(de)(de)過(guo)(guo)程(cheng)。

硫酸鹽還原菌 SRB 對鋼材腐蝕行為的研究進展.jpg

圖1 生物膜(mo)的(de)形成和發展過程[28, 29]

1.2 SRB 生物膜特(te)性及對腐蝕(shi)的影響

利用(yong)(yong)在(zai)碳鋼表面形成(cheng)(cheng)的(de)(de)(de)(de)(de)生(sheng)(sheng)(sheng)物(wu)膜(mo)(mo),SRB 自身可(ke)以(yi)(yi)(yi)創造一個微(wei)型厭氧環境(jing),從(cong)而(er)促(cu)進生(sheng)(sheng)(sheng)物(wu)膜(mo)(mo)中(zhong) SRB 的(de)(de)(de)(de)(de)生(sheng)(sheng)(sheng)長并引起碳鋼的(de)(de)(de)(de)(de)腐(fu)蝕(shi)[29]。SRB 可(ke)以(yi)(yi)(yi)在(zai)厭氧條件下生(sheng)(sheng)(sheng)長,并產(chan)生(sheng)(sheng)(sheng)大(da)量(liang)黏液狀的(de)(de)(de)(de)(de)胞外(wai)聚合物(wu)(EPS)。EPS 是微(wei)生(sheng)(sheng)(sheng)物(wu)膜(mo)(mo)的(de)(de)(de)(de)(de)主要組(zu)成(cheng)(cheng)成(cheng)(cheng)分,它(ta)具(ju)有(you)很強(qiang)的(de)(de)(de)(de)(de)絡合能力,能夠將多(duo)(duo)種(zhong)無機金屬離(li)子固定下來(lai)。不僅如(ru)此,其還包括多(duo)(duo)聚糖、蛋白(bai)質(zhi)和(he)糖脂類等(deng),微(wei)生(sheng)(sheng)(sheng)物(wu)產(chan)生(sheng)(sheng)(sheng)的(de)(de)(de)(de)(de) EPS一般都(dou)是帶電荷(he)的(de)(de)(de)(de)(de),外(wai)加電場可(ke)以(yi)(yi)(yi)破壞 EPS 的(de)(de)(de)(de)(de)荷(he)電特(te)性(xing)[30]。許萍等(deng)[31]研究了 EPS 中(zhong)的(de)(de)(de)(de)(de)主要成(cheng)(cheng)分多(duo)(duo)糖和(he)蛋白(bai)質(zhi)對(dui)金屬材(cai)(cai)料腐(fu)蝕(shi)行為的(de)(de)(de)(de)(de)影(ying)響,結(jie)果發(fa)現當多(duo)(duo)糖或蛋白(bai)質(zhi)的(de)(de)(de)(de)(de)質(zhi)量(liang)濃度(du)為 1.0 mg/mL 時,其對(dui)碳鋼有(you)最低的(de)(de)(de)(de)(de)腐(fu)蝕(shi)速率。有(you)些(xie)細菌還可(ke)以(yi)(yi)(yi)在(zai) EPS 的(de)(de)(de)(de)(de)引導下產(chan)生(sheng)(sheng)(sheng)礦化(hua)層,起到阻礙(ai)腐(fu)蝕(shi)介質(zhi)傳遞從(cong)而(er)降(jiang)低腐(fu)蝕(shi)速率[18] 。細菌的(de)(de)(de)(de)(de)這種(zhong)能力往往會受(shou)到環境(jing)中(zhong) pH、金屬離(li)子組(zu)成(cheng)(cheng)及其濃度(du)的(de)(de)(de)(de)(de)影(ying)響[32]。也有(you)研究表明[28, 33],高濃度(du)的(de)(de)(de)(de)(de) EPS 對(dui) Fe2+具(ju)有(you)很強(qiang)的(de)(de)(de)(de)(de)絡合作用(yong)(yong),能夠有(you)效的(de)(de)(de)(de)(de)促(cu)進基(ji)體材(cai)(cai)料的(de)(de)(de)(de)(de)陽極溶解,從(cong)而(er)促(cu)進碳鋼的(de)(de)(de)(de)(de)腐(fu)蝕(shi);低濃度(du)的(de)(de)(de)(de)(de) EPS 可(ke)以(yi)(yi)(yi)通(tong)過(guo)(guo)抑制陰極反(fan)應過(guo)(guo)程減緩電化(hua)學腐(fu)蝕(shi)的(de)(de)(de)(de)(de)發(fa)生(sheng)(sheng)(sheng),以(yi)(yi)(yi)此來(lai)控制碳鋼腐(fu)蝕(shi)的(de)(de)(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)。

1.3 SRB 腐蝕機理(li)

通過(guo)研究金屬(shu)表面微生物(wu)的數量及活性變(bian)化、生物(wu)膜(mo)及代(dai)(dai)謝產物(wu)成分、金屬(shu)腐蝕產物(wu)的結構(gou)與晶型以(yi)及腐蝕后(hou)金屬(shu)基底的粗糙度(du)變(bian)化等(deng)可(ke)以(yi)對金屬(shu)材(cai)料腐蝕機(ji)(ji)理(li)(li)(li)進行判(pan)斷[5, 34]。典型的 SRB 腐蝕機(ji)(ji)理(li)(li)(li)主要有(you)陰極(ji)(ji)去極(ji)(ji)化機(ji)(ji)理(li)(li)(li)、代(dai)(dai)謝產物(wu)腐蝕機(ji)(ji)理(li)(li)(li)、Fe/FeS 微電池機(ji)(ji)理(li)(li)(li)、濃(nong)差電池機(ji)(ji)理(li)(li)(li)、生物(wu)能量機(ji)(ji)理(li)(li)(li)、直接(jie)和間接(jie)電子傳(chuan)遞機(ji)(ji)理(li)(li)(li)以(yi)及排(pai)硫(liu)桿菌與 SRB 混合作用腐蝕機(ji)(ji)理(li)(li)(li)等(deng),其中陰極(ji)(ji)去極(ji)(ji)化是目前認可(ke)度(du)最高的腐蝕機(ji)(ji)理(li)(li)(li)[35]。

(1)陰(yin)(yin)極去(qu)極化機理:SRB 腐(fu)蝕(shi)本質是電化學腐(fu)蝕(shi),其陰(yin)(yin)極在(zai)厭氧條件下會發(fa)生(sheng)析氫反應(ying)。在(zai)該反應(ying)過(guo)程(cheng)中,氫離子(zi)(zi)得到電子(zi)(zi)被(bei)還原(yuan)為氫原(yuan)子(zi)(zi),然后這些氫原(yuan)子(zi)(zi)在(zai)金屬表面(mian)粘附下來,金屬表面(mian)的氫原(yuan)子(zi)(zi)會被(bei) SRB 利用氫化酶去(qu)除,從而使腐(fu)蝕(shi)發(fa)生(sheng)[3]。

(2)代(dai)(dai)謝產物(wu)(wu)腐(fu)蝕(shi)機理:作(zuo)為典(dian)型(xing)的(de)(de)碳鋼腐(fu)蝕(shi)機理之一(yi)(yi),SRB 代(dai)(dai)謝物(wu)(wu)的(de)(de)硫化(hua)物(wu)(wu)是(shi)(shi)其主要來源,也有(you)研究表明是(shi)(shi)代(dai)(dai)謝產物(wu)(wu)磷化(hua)物(wu)(wu)的(de)(de)作(zuo)用(yong)[36] 。一(yi)(yi)方面(mian),SRB 對(dui)金屬的(de)(de)腐(fu)蝕(shi)速率與 H2 S濃度有(you)關[28] ;另一(yi)(yi)方面(mian),SRB 代(dai)(dai)謝產生的(de)(de) S2-與溶液中的(de)(de) Fe2+結合,還(huan)會形(xing)成(cheng)致密或疏松的(de)(de)FeS 膜,影響(xiang)腐(fu)蝕(shi)過程(cheng)。

(3)Fe/FeS 微電池(chi)作(zuo)用(yong)機理: SRB 代謝生(sheng)成的(de)(de) S2-在與鐵(tie)的(de)(de)相互(hu)作(zuo)用(yong)過(guo)程中,形成的(de)(de) FeS作(zuo)為陰極并(bing)吸附在基體表面,并(bing)且常常與鐵(tie)陽極形成腐(fu)蝕電池(chi),在微電池(chi)的(de)(de)作(zuo)用(yong)下不斷(duan)使腐(fu)蝕發生(sheng)[36]。

(4)濃差電池機理:當部分腐蝕(shi)產物覆(fu)蓋(gai)在(zai)金(jin)(jin)屬(shu)表(biao)面時,溶解于水中的(de)(de)氧氣無法與金(jin)(jin)屬(shu)基體(ti)進行接觸,這樣會(hui)導(dao)致(zhi)管道上被沉積物覆(fu)蓋(gai)的(de)(de)區域呈現陽極(ji)變化,形成氧濃差電池[37],從而使(shi)得(de)金(jin)(jin)屬(shu)表(biao)面原有(you)的(de)(de)腐蝕(shi)更加嚴重(zhong)。

(5)生物(wu)能(neng)量(liang)機理:腐(fu)蝕(shi)的(de)(de)發生會伴隨能(neng)量(liang)釋(shi)放(fang),SRB 的(de)(de)腐(fu)蝕(shi)反(fan)應(ying)就是一(yi)個自發的(de)(de)放(fang)能(neng)反(fan)應(ying)。研究表明當微生物(wu)生長處于停滯階段時,附著在金屬(shu)表面(mian)的(de)(de)生物(wu)膜(mo)以金屬(shu)為電子(zi)供(gong)體,通過腐(fu)蝕(shi)金屬(shu)獲得生存(cun)所需的(de)(de)能(neng)量(liang)[38]。正是由于這(zhe)一(yi)獲得生存(cun)能(neng)量(liang)的(de)(de)過程(cheng)(cheng),從而導致金屬(shu)材料腐(fu) 蝕(shi)的(de)(de)發生 ,總的(de)(de)反(fan) 應(ying)過程(cheng)(cheng)可以表示(shi)為 :2CH3CHOHCOO+SO4 +H+ →2CH3COO+2CO2+HS+4H2O,4Fe+SO4 +9H+→ HS+4H2O+4Fe2+ 。

(6)直接(jie)和間(jian)接(jie)電(dian)子傳遞機理:直接(jie)電(dian)子傳遞指(zhi)的(de)(de)是(shi)細(xi)菌(jun)通(tong)過(guo)自(zi)身(shen)的(de)(de)導電(dian)納米(mi)線[39] 或(huo)細(xi)胞膜(mo)上(shang)的(de)(de)導電(dian)蛋白[40]進行(xing)電(dian)子傳遞;間(jian)接(jie)電(dian)子傳遞是(shi)指(zhi)細(xi)菌(jun)會(hui)利用(yong)自(zi)身(shen)分泌的(de)(de)可溶性電(dian)子載(zai)體進行(xing)生長和代謝,并且傳遞的(de)(de)金屬電(dian)子主(zhu)要是(shi)通(tong)過(guo)細(xi)胞膜(mo)表面(mian)的(de)(de)細(xi)胞色素 C 蛋白來進行(xing)轉移[41] 。

(7)與排硫(liu)桿菌(jun)混(hun)合作用腐蝕機理(li):硫(liu)氧化細(xi)菌(jun)(SOB)屬于耗氧菌(jun),它是一種(zhong)典型的

排硫桿(gan)菌(jun),其中(zhong)的(de)硫代謝(xie)生(sheng)(sheng)化過程為:2H2+2O2→H2S2+O3+H2O,5S2 2O3 +4O2 +H2O→5SO4 2+H2SO4+4S,2S+3O2+2H2O→2H2SO4;而 SRB 的(de)硫代謝(xie)生(sheng)(sheng)化過程為:SO4 +8H→S2-+4H2O,二(er)者可以形成共(gong)生(sheng)(sheng)細菌(jun),從(cong)而共(gong)同加(jia)速腐(fu)蝕的(de)發生(sheng)(sheng)。


2 SRB 腐蝕中的(de)協(xie)同作用

在自然環境中,微(wei)(wei)生物大部分都是共生的,它們往(wang)往(wang)會協(xie)(xie)作(zuo)建立(li)一個微(wei)(wei)生態系統。厭氧(yang)型SRB和典(dian)型好氧(yang)微(wei)(wei)生物IOB就(jiu)可以(yi)(yi)協(xie)(xie)同(tong)加速(su)工(gong)程(cheng)材(cai)料的腐蝕(shi)。除了(le)與(yu)IOB之間的協(xie)(xie)同(tong)作(zuo),SRB 還會與(yu)其他因素產生協(xie)(xie)同(tong)作(zuo)用,例如腐蝕(shi)性陰離子(Cl-/SO42-)、彈(dan)性應力以(yi)(yi)及(ji) CO2等。

2.1 SRB 與(yu) IOB 的協同(tong)作(zuo)用

鐵氧(yang)化(hua)細菌(jun)是一(yi)種(zhong)典型好氧(yang)菌(jun),只要在(zai)有(you)(you)一(yi)部分溶(rong)(rong)解的(de)(de)(de)(de)流動(dong)水中(zhong),就可(ke)以(yi)(yi)(yi)(yi)不(bu)斷生(sheng)(sheng)長。該細菌(jun)以(yi)(yi)(yi)(yi)碳(tan)酸鹽為(wei)碳(tan)源,通(tong)過(guo)反應產生(sheng)(sheng)能量(liang)和(he)鐵以(yi)(yi)(yi)(yi)維(wei)持其能量(liang)代謝(xie)。IOB 還可(ke)以(yi)(yi)(yi)(yi)通(tong)過(guo)有(you)(you)氧(yang)呼(hu)吸(xi)降解大分子有(you)(you)機物(wu),從(cong)而(er)產生(sheng)(sheng)富含 Fe 的(de)(de)(de)(de)厭(yan)氧(yang)環境(jing),為(wei)厭(yan)氧(yang)的(de)(de)(de)(de) SRB 創造合適的(de)(de)(de)(de)生(sheng)(sheng)長環境(jing),加氣(qi)體速碳(tan)鋼(gang)管道的(de)(de)(de)(de)腐蝕(shi)或者(zhe)促進(jin)(jin) SRB 對(dui)(dui)基體材(cai)料(liao)的(de)(de)(de)(de)腐蝕(shi)。研究(jiu)發(fa)現[36],IOB 可(ke)以(yi)(yi)(yi)(yi)將 Fe2+氧(yang)化(hua)成(cheng)(cheng) Fe3+并(bing)生(sheng)(sheng)成(cheng)(cheng) Fe(OH)3,從(cong)而(er)在(zai)金屬表(biao)(biao)面產生(sheng)(sheng)氧(yang)濃差(cha)電(dian)池,引起局(ju)部腐蝕(shi),從(cong)中(zhong)獲得(de)能量(liang)。Liu等[42]研究(jiu)發(fa)現,在(zai) SRB 和(he) IOB 共(gong)存條件下,二(er)者(zhe)對(dui)(dui)試(shi)樣的(de)(de)(de)(de)點蝕(shi)有(you)(you)協(xie)同作(zuo)用(yong)(yong),碳(tan)鋼(gang)試(shi)樣表(biao)(biao)面會產生(sheng)(sheng)更為(wei)嚴重的(de)(de)(de)(de)點蝕(shi),并(bing)且(qie)在(zai)碳(tan)鋼(gang)表(biao)(biao)面形成(cheng)(cheng)疏松多孔的(de)(de)(de)(de)生(sheng)(sheng)物(wu)膜。孫福(fu)洋等[43] 研究(jiu)了(le)(le)土壤模擬溶(rong)(rong)液中(zhong) SRB 和(he) IOB 對(dui)(dui) X100 管線(xian)鋼(gang)腐蝕(shi)行(xing)為(wei)的(de)(de)(de)(de)影響(xiang),結果(guo)(guo)表(biao)(biao)明(ming)兩種(zhong)細菌(jun)協(xie)同加劇了(le)(le) X100 管線(xian)鋼(gang)的(de)(de)(de)(de)全(quan)面腐蝕(shi),腐蝕(shi)產物(wu)主要為(wei) FeS 和(he) Fe2O3。以(yi)(yi)(yi)(yi)上研究(jiu)表(biao)(biao)明(ming)作(zuo)為(wei)典型的(de)(de)(de)(de)厭(yan)氧(yang)菌(jun)和(he)好氧(yang)菌(jun),SRB和(he)IOB對(dui)(dui)鋼(gang)鐵材(cai)料(liao)協(xie)同腐蝕(shi)作(zuo)用(yong)(yong)的(de)(de)(de)(de)研究(jiu)取得(de)了(le)(le)很多成(cheng)(cheng)果(guo)(guo),隨著現代分析技術(shu)的(de)(de)(de)(de)不(bu)斷發(fa)展,可(ke)以(yi)(yi)(yi)(yi)進(jin)(jin)一(yi)步從(cong)微(wei)觀上闡明(ming)二(er)者(zhe)的(de)(de)(de)(de)協(xie)同作(zuo)用(yong)(yong)機理(li)。

2.2 SRB 與 Cl‐和 SO42‐的協同(tong)作用(yong)

當一些陰離子與 SRB 共同(tong)存在(zai)(zai)時(shi)(shi),陰離子會(hui)改變(bian) SRB 的活(huo)性(xing),進而(er)影(ying)響(xiang)(xiang)金屬材(cai)料的腐(fu)(fu)(fu)蝕(shi)(shi)行為(wei)[7]。鄭美(mei)露[44]采用電化學測量(liang)(liang)(liang)方(fang)法(fa)分(fen)析了土壤模擬(ni)溶液中的陰離子 SO42-和Cl-對(dui)(dui) X70 鋼(gang)SRB 腐(fu)(fu)(fu)蝕(shi)(shi)行為(wei),結果表明當 SO42-的濃(nong)度(du)(du)(du)增加(jia)時(shi)(shi),SRB對(dui)(dui) X70 鋼(gang)的腐(fu)(fu)(fu)蝕(shi)(shi)速率(lv)會(hui)先增大(da)后減(jian)小(xiao);而(er)隨(sui)著介質中 Cl-含量(liang)(liang)(liang)的增加(jia),X70 鋼(gang)表面(mian)(mian)的 SRB 腐(fu)(fu)(fu)蝕(shi)(shi)速率(lv)先減(jian)小(xiao)后增大(da)。辛征(zheng)等[45] 研究了316L 不(bu)(bu)銹鋼(gang)表面(mian)(mian)微生(sheng)(sheng)物(wu)在(zai)(zai)不(bu)(bu)同(tong)濃(nong)度(du)(du)(du)的 Cl-作(zuo)用下的腐(fu)(fu)(fu)蝕(shi)(shi)行為(wei),結果發現當 Cl-濃(nong)度(du)(du)(du)較低(di)(di)時(shi)(shi),SRB 具有較強的生(sheng)(sheng)長(chang)活(huo)性(xing)且(qie)表面(mian)(mian)生(sheng)(sheng)物(wu)膜疏松多孔(kong),表明此(ci)時(shi)(shi) 316L 不(bu)(bu)銹鋼(gang)的腐(fu)(fu)(fu)蝕(shi)(shi)速率(lv)相(xiang)對(dui)(dui)較快。張倩等[46]研究了 SRB 在(zai)(zai)不(bu)(bu)同(tong)濃(nong)度(du)(du)(du)的 Cl-溶液中對(dui)(dui) Q235 鋼(gang)的腐(fu)(fu)(fu)蝕(shi)(shi)行為(wei),結果表明當溶液中Cl-含量(liang)(liang)(liang)低(di)(di)于(yu) 50g/L 時(shi)(shi),隨(sui)著 Cl-含量(liang)(liang)(liang)增加(jia),會(hui)促進 SRB 對(dui)(dui) Q235 鋼(gang)的腐(fu)(fu)(fu)蝕(shi)(shi)。孟章進等[47] 發現SO42- 在(zai)(zai)一定程度(du)(du)(du)上會(hui)影(ying)響(xiang)(xiang) SRB 的生(sheng)(sheng)長(chang)活(huo)性(xing),當 SO42-濃(nong)度(du)(du)(du)為(wei) 1000 mg/L 時(shi)(shi),SRB 數(shu)量(liang)(liang)(liang)最(zui)多且(qie)活(huo)性(xing)最(zui)強;但當 SO4 濃(nong)度(du)(du)(du)達到(dao)一定值時(shi)(shi),SRB 的生(sheng)(sheng)長(chang)速率(lv)會(hui)趨于(yu)穩定。研究還發現,SO42-參(can)與 SRB 的代謝活(huo)動時(shi)(shi),作(zuo)為(wei) SRB 的電子受體(ti),其濃(nong)度(du)(du)(du)的變(bian)化可以直接影(ying)響(xiang)(xiang) SRB 的生(sheng)(sheng)長(chang)狀態[7] 。

2.3 SRB 與彈性(xing)應力的協(xie)同作用

SRB 和應(ying)力之間協(xie)同(tong)作(zuo)用可以誘發(fa)或增強(qiang)管(guan)(guan)線鋼(gang)(gang)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)開裂,研究管(guan)(guan)線鋼(gang)(gang)在(zai) SRB 和外(wai)應(ying)力共(gong)同(tong)作(zuo)用下的(de)(de)(de)(de)(de)微裂紋萌生(sheng)過(guo)程,對于(yu) SRB 腐(fu)(fu)蝕(shi)(shi)(shi)(shi)開裂機理的(de)(de)(de)(de)(de)研究具有重要意義[48] 。王(wang)丹(dan)等(deng)(deng)[49]研究發(fa)現,X80 鋼(gang)(gang)在(zai)土壤(rang)模擬溶液中的(de)(de)(de)(de)(de)應(ying)力腐(fu)(fu)蝕(shi)(shi)(shi)(shi)開裂機制為陽極(ji)(ji)溶解;與(yu)(yu)沒(mei)有細菌的(de)(de)(de)(de)(de)環境相比,SRB 的(de)(de)(de)(de)(de)存(cun)在(zai)會促(cu)進 X80 鋼(gang)(gang)的(de)(de)(de)(de)(de)陽極(ji)(ji)溶解,從(cong)而引發(fa)金屬(shu)點(dian)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)發(fa)生(sheng)。Wu 等(deng)(deng)[50]研究了 SRB與(yu)(yu)彈性(xing)(xing)應(ying)力對 X80 鋼(gang)(gang)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)協(xie)同(tong)作(zuo)用,結(jie)果(guo)表(biao)明(ming)二(er)者都能使得鋼(gang)(gang)材(cai)的(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)程度有所增加,并且共(gong)同(tong)對 X80 鋼(gang)(gang)的(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)起促(cu)進作(zuo)用。此外(wai),SRB 的(de)(de)(de)(de)(de)活性(xing)(xing)引起了凹(ao)坑的(de)(de)(de)(de)(de)萌生(sheng),外(wai)加的(de)(de)(de)(de)(de)彈性(xing)(xing)應(ying)力繼(ji)續保持并促(cu)進了凹(ao)坑的(de)(de)(de)(de)(de)生(sheng)長,SRB 的(de)(de)(de)(de)(de)活性(xing)(xing)和外(wai)加的(de)(de)(de)(de)(de)彈性(xing)(xing)應(ying)力在(zai)初始點(dian)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)底部會引起微小的(de)(de)(de)(de)(de)二(er)次點(dian)蝕(shi)(shi)(shi)(shi)。吳(wu)堂清(qing)等(deng)(deng)[48] 研究了管(guan)(guan)線鋼(gang)(gang)在(zai)彈性(xing)(xing)應(ying)力作(zuo)用下的(de)(de)(de)(de)(de)微生(sheng)物致(zhi)裂行為,結(jie)果(guo)表(biao)明(ming) SRB的(de)(de)(de)(de)(de)生(sheng)理活性(xing)(xing)改變了腐(fu)(fu)蝕(shi)(shi)(shi)(shi)產(chan)物的(de)(de)(de)(de)(de)結(jie)構,導致(zhi)管(guan)(guan)線鋼(gang)(gang)局(ju)部腐(fu)(fu)蝕(shi)(shi)(shi)(shi)敏感性(xing)(xing)提高。

2.4 SRB 與 CO2的協同作用

近(jin)年來,有關鋼(gang)材(cai)在(zai) CO2和 SRB 共存條件(jian)(jian)下的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)行(xing)(xing)(xing)為(wei)(wei)的(de)(de)(de)(de)研究也(ye)有報(bao)道,二(er)者(zhe)會(hui)通過協同作用共同促進金(jin)屬材(cai)料的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)[12]。劉(liu)宏偉等[51]研究了(le)(le)(le)十二(er)胺緩蝕(shi)劑(ji)在(zai)飽和 CO2和SRB 共存條件(jian)(jian)下對(dui)20#鋼(gang)的(de)(de)(de)(de)緩蝕(shi)行(xing)(xing)(xing)為(wei)(wei),結(jie)(jie)果表明(ming)在(zai)該實驗條件(jian)(jian)下試(shi)樣以均勻腐(fu)(fu)蝕(shi)為(wei)(wei)主,局部會(hui)出現(xian)明(ming)顯的(de)(de)(de)(de)點蝕(shi)。陳旭等[52] 研究了(le)(le)(le)在(zai)含(han) CO2的(de)(de)(de)(de)近(jin)中性溶液中 SRB 對(dui) X70 鋼(gang)的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)行(xing)(xing)(xing)為(wei)(wei),結(jie)(jie)果發現(xian)隨(sui)著(zhu)CO2濃度不斷增加(jia),SRB 和 CO2會(hui)共同促進金(jin)屬表面(mian)點蝕(shi)的(de)(de)(de)(de)進行(xing)(xing)(xing),且 X70 鋼(gang)在(zai)近(jin)中性 pH 值菌液中的(de)(de)(de)(de)表面(mian)膜(mo)層(ceng)致密性變(bian)差。劉(liu)鳳蘭[53] 開展(zhan)了(le)(le)(le)在(zai)含(han)有 CO2工(gong)況條件(jian)(jian)下的(de)(de)(de)(de)注水(shui)系統(tong)(tong)腐(fu)(fu)蝕(shi)規律(lv)的(de)(de)(de)(de)研究,結(jie)(jie)果發現(xian) SRB 與 CO2協同作用加(jia)劇了(le)(le)(le)注水(shui)系統(tong)(tong)腐(fu)(fu)蝕(shi)程(cheng)度,而且二(er)者(zhe)也(ye)是注水(shui)系統(tong)(tong)腐(fu)(fu)蝕(shi)結(jie)(jie)垢的(de)(de)(de)(de)主要影響因素。

3 SRB 腐蝕的控制方法

3.1 物理(li)手段(duan)

物(wu)(wu)理手段主要是(shi)通(tong)過(guo)(guo)一(yi)些物(wu)(wu)理方(fang)法例如利(li)用(yong)(yong)靜(jing)(jing)磁(ci)場(chang)(chang)作(zuo)用(yong)(yong)、超聲(sheng)波(bo)(bo)處(chu)理[54]、紫(zi)外線(xian)照射以(yi)(yi)及通(tong)過(guo)(guo)改變介質(zhi)環境(jing)來減(jian)少(shao) SRB 生(sheng)(sheng)長(chang)(chang)(chang)所必需(xu)的(de)(de)(de)(de)(de)(de)(de)營養(yang)元素從而控(kong)(kong)制(zhi)(zhi)微(wei)生(sheng)(sheng)物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)。靜(jing)(jing)磁(ci)場(chang)(chang)可(ke)以(yi)(yi)抑(yi)制(zhi)(zhi)生(sheng)(sheng)物(wu)(wu)膜(mo)下(xia)(xia)微(wei)生(sheng)(sheng)物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi),即利(li)用(yong)(yong)磁(ci)場(chang)(chang)作(zuo)用(yong)(yong)影(ying)響(xiang) SRB 的(de)(de)(de)(de)(de)(de)(de)分(fen)(fen)裂和生(sheng)(sheng)物(wu)(wu)酶的(de)(de)(de)(de)(de)(de)(de)活性[3]。Chen 等[55, 56]研(yan)究(jiu)(jiu)了(le)靜(jing)(jing)態磁(ci)場(chang)(chang)對(dui) SRB 微(wei)生(sheng)(sheng)物(wu)(wu)腐(fu)(fu)蝕(shi)的(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),研(yan)究(jiu)(jiu)發現(xian) SRB 的(de)(de)(de)(de)(de)(de)(de)固著數量(liang)(liang)在 200 mT 的(de)(de)(de)(de)(de)(de)(de)靜(jing)(jing)磁(ci)場(chang)(chang)下(xia)(xia)會(hui)有(you)所減(jian)少(shao),且該磁(ci)場(chang)(chang)條(tiao)(tiao)件(jian)下(xia)(xia)會(hui)促進(jin) SRB 生(sheng)(sheng)物(wu)(wu)膜(mo)的(de)(de)(de)(de)(de)(de)(de)分(fen)(fen)散,形(xing)成的(de)(de)(de)(de)(de)(de)(de)較(jiao)致(zhi)密腐(fu)(fu)蝕(shi)產物(wu)(wu)膜(mo)會(hui)抑(yi)制(zhi)(zhi) SRB 的(de)(de)(de)(de)(de)(de)(de)生(sheng)(sheng)長(chang)(chang)(chang)繁殖。李克娟(juan)等[57]研(yan)究(jiu)(jiu)了(le)磁(ci)場(chang)(chang)條(tiao)(tiao)件(jian)下(xia)(xia) SRB 對(dui) Q235 鋼腐(fu)(fu)蝕(shi)行(xing)為(wei)的(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),研(yan)究(jiu)(jiu)發現(xian) Q235 鋼表面生(sheng)(sheng)物(wu)(wu)膜(mo)均勻致(zhi)密,在磁(ci)場(chang)(chang)作(zuo)用(yong)(yong)下(xia)(xia)與金屬表面結(jie)合更(geng)加緊密,表明(ming)磁(ci)場(chang)(chang)作(zuo)用(yong)(yong)能有(you)效地抑(yi)制(zhi)(zhi) SRB 對(dui)Q235 鋼的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)。當超聲(sheng)波(bo)(bo)達到 90 kHz/s 以(yi)(yi)上的(de)(de)(de)(de)(de)(de)(de)頻(pin)率時,可(ke)以(yi)(yi)震蕩細菌的(de)(de)(de)(de)(de)(de)(de)組織(zhi)結(jie)構,從而對(dui) SRB 本身造成破壞(huai)以(yi)(yi)控(kong)(kong)制(zhi)(zhi)對(dui)材料的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)。紫(zi)外線(xian)具有(you)殺滅細菌的(de)(de)(de)(de)(de)(de)(de)作(zuo)用(yong)(yong),紫(zi)外線(xian)波(bo)(bo)長(chang)(chang)(chang)一(yi)般在 210~313 nm 內就(jiu)會(hui)有(you)很(hen)強的(de)(de)(de)(de)(de)(de)(de)輻射效應[58],這(zhe)個范圍完全可(ke)以(yi)(yi)進(jin)行(xing)滅殺 SRB。辛征(zheng)[59]研(yan)究(jiu)(jiu)了(le)不(bu)同的(de)(de)(de)(de)(de)(de)(de)環境(jing)因素對(dui) SRB 生(sheng)(sheng)長(chang)(chang)(chang)代謝(xie)的(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),結(jie)果(guo)發現(xian) SRB 在 pH 值(zhi)為(wei) 5.5~7.5的(de)(de)(de)(de)(de)(de)(de)環境(jing)中和 40℃左右的(de)(de)(de)(de)(de)(de)(de)條(tiao)(tiao)件(jian)下(xia)(xia)均可(ke)以(yi)(yi)大量(liang)(liang)生(sheng)(sheng)長(chang)(chang)(chang)繁殖,故可(ke)以(yi)(yi)通(tong)過(guo)(guo)調整腐(fu)(fu)蝕(shi)介質(zhi)的(de)(de)(de)(de)(de)(de)(de) pH 值(zhi)大小(xiao)以(yi)(yi)及通(tong)過(guo)(guo)升(sheng)高或降低溫度來抑(yi)制(zhi)(zhi) SRB 的(de)(de)(de)(de)(de)(de)(de)生(sheng)(sheng)長(chang)(chang)(chang)。


3.2 化學(xue)手段

化(hua)學(xue)(xue)手段(duan)主要是通過使用一些殺菌(jun)劑(ji)、緩(huan)蝕劑(ji)等(deng)化(hua)學(xue)(xue)試劑(ji)來控(kong)制微(wei)生物(wu)的生長或者(zhe)在金

屬(shu)(shu)材(cai)(cai)料(liao)(liao)表(biao)(biao)(biao)面(mian)鍍上耐蝕(shi)性(xing)涂層來改變基(ji)體材(cai)(cai)料(liao)(liao)表(biao)(biao)(biao)面(mian)特性(xing)以此控制(zhi)微生物對金(jin)屬(shu)(shu)材(cai)(cai)料(liao)(liao)的(de)(de)腐蝕(shi)破壞。常用(yong)的(de)(de)殺菌(jun)(jun)劑可(ke)分為氧化(hua)(hua)型(xing)和非氧化(hua)(hua)型(xing)兩種[35, 60],氧化(hua)(hua)型(xing)主要(yao)(yao)有氯氣(qi),二(er)氧化(hua)(hua)氯,臭氧;非氧化(hua)(hua)型(xing)主要(yao)(yao)有戊二(er)醛(quan),異噻唑啉酮,季銨鹽,四(si)羥(qian)甲基(ji)硫,酸磷。許萍(ping)等[19]指出,某些微生物可(ke)分泌殺菌(jun)(jun)劑,不僅(jin)能夠減(jian)少金(jin)屬(shu)(shu)表(biao)(biao)(biao)面(mian)的(de)(de)電子受(shou)體,還能阻(zu)礙陰極去(qu)極化(hua)(hua)過(guo)程(cheng)從(cong)而起(qi)到(dao)抑(yi)制(zhi)金(jin)屬(shu)(shu)腐蝕(shi)的(de)(de)作(zuo)用(yong)。劉宏偉等[61]研究(jiu)了污水(shui)介質中(zhong)加入(ru)殺菌(jun)(jun)劑前(qian)后 SRB 的(de)(de)菌(jun)(jun)株數量,實(shi)驗結果表(biao)(biao)(biao)明,SRB 的(de)(de)數量在殺菌(jun)(jun)劑添加前(qian)后從(cong) 2.5×103 減(jian)少到(dao)了 1.2 個/mL,表(biao)(biao)(biao)明SRB 的(de)(de)腐(fu)(fu)蝕(shi)(shi)破壞在(zai)(zai)(zai)殺(sha)菌(jun)劑(ji)(ji)(ji)作用(yong)下得到了(le)抑(yi)制(zhi)。研究還(huan)發現[37],大量(liang)的(de)(de)殺(sha)菌(jun)劑(ji)(ji)(ji)由(you)于其自身(shen)毒性(xing)(xing)會對周圍環(huan)境造成(cheng)新的(de)(de)污(wu)染,而且 SRB 常受到介(jie)質(zhi)環(huan)境中(zhong)其他微生物產生的(de)(de)多糖保護,使(shi)(shi)其殺(sha)菌(jun)效(xiao)(xiao)果(guo)變差。因此開發環(huan)境友好型(xing)、適合現場(chang)實際需要的(de)(de)新型(xing)殺(sha)菌(jun)劑(ji)(ji)(ji)備受關注。添加(jia)緩蝕(shi)(shi)劑(ji)(ji)(ji)也(ye)是控(kong)制(zhi)金(jin)屬(shu)腐(fu)(fu)蝕(shi)(shi)的(de)(de)有(you)效(xiao)(xiao)手(shou)段(duan),因其具(ju)有(you)成(cheng)本低、使(shi)(shi)用(yong)方便、見效(xiao)(xiao)快等優點,在(zai)(zai)(zai)石油化(hua)工行(xing)業中(zhong)得到了(le)廣(guang)泛的(de)(de)應用(yong)[62]。王貴等[63]通過(guo)采用(yong) 7 種緩蝕(shi)(shi)劑(ji)(ji)(ji)對油田(tian)采出水(shui)中(zhong)碳鋼(gang)腐(fu)(fu)蝕(shi)(shi)失重進行(xing)評價,實驗結果(guo)最后表(biao)(biao)明隨(sui)著緩蝕(shi)(shi)劑(ji)(ji)(ji)質(zhi)量(liang)濃度的(de)(de)增加(jia),緩蝕(shi)(shi)率也(ye)不(bu)斷提(ti)高。SRB 廣(guang)泛存在(zai)(zai)(zai)于油氣管道中(zhong),它(ta)可通過(guo)自身(shen)的(de)(de)代謝活動(dong)影響緩蝕(shi)(shi)劑(ji)(ji)(ji)膜層的(de)(de)完整性(xing)(xing)[36]。研究表(biao)(biao)明,在(zai)(zai)(zai)碳鋼(gang)材(cai)料表(biao)(biao)面覆蓋一(yi)層防護性(xing)(xing)涂層不(bu)僅(jin)能夠使(shi)(shi)基體表(biao)(biao)面不(bu)易被細菌(jun)附著,同(tong)時也(ye)具(ju)有(you)殺(sha)菌(jun)防護的(de)(de)作用(yong) [26]。目前油氣管道多為(wei)碳鋼(gang)材(cai)質(zhi),易引起(qi) SRB 的(de)(de)腐(fu)(fu)蝕(shi)(shi),涂層保護是一(yi)種有(you)效(xiao)(xiao)的(de)(de)防腐(fu)(fu)蝕(shi)(shi)手(shou)段(duan),如在(zai)(zai)(zai)金(jin)屬(shu)表(biao)(biao)面電(dian)鍍鉻(ge)鋅、涂覆環(huan)氧樹(shu)脂及聚乙(yi)烯等都可以使(shi)(shi)腐(fu)(fu)蝕(shi)(shi)得到控(kong)制(zhi)。不(bu)僅(jin)如此,為(wei)了(le)提(ti)高油氣管道的(de)(de)耐腐(fu)(fu)蝕(shi)(shi)性(xing)(xing)能,還(huan)可以在(zai)(zai)(zai)管道材(cai)料上施加(jia)一(yi)層鈦或形(xing)成(cheng)鈦合金(jin),以防止 SRB引起(qi)的(de)(de)腐(fu)(fu)蝕(shi)(shi)。


3.3 生物手段

實(shi)驗結(jie)果表(biao)明,SRB 的(de)(de)(de)(de)數量在殺菌(jun)(jun)劑添加前(qian)(qian)后從 2.5×103 減少(shao)到(dao)了(le)(le) 1.2 個(ge)/mL,表(biao)明SRB 的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)破壞(huai)在殺菌(jun)(jun)劑作用下得到(dao)了(le)(le)抑制。研究還(huan)發現[37],大量的(de)(de)(de)(de)殺菌(jun)(jun)劑由于(yu)其(qi)(qi)自(zi)身毒性會對周(zhou)圍環境造成新(xin)(xin)的(de)(de)(de)(de)污染,而且 SRB 常受到(dao)介質(zhi)環境中其(qi)(qi)他微生物產生的(de)(de)(de)(de)多(duo)糖保(bao)護,使(shi)其(qi)(qi)殺菌(jun)(jun)效果變差。因(yin)此(ci)開發環境友好型(xing)(xing)、適合現場實(shi)際需(xu)要(yao)的(de)(de)(de)(de)新(xin)(xin)型(xing)(xing)殺菌(jun)(jun)劑備受關注。添加緩蝕(shi)(shi)劑也是控(kong)制金屬腐(fu)(fu)蝕(shi)(shi)的(de)(de)(de)(de)有(you)(you)(you)效手段(duan),因(yin)其(qi)(qi)具(ju)有(you)(you)(you)成本低、使(shi)用方便、見效快等(deng)優點,在石油化工行(xing)業中得到(dao)了(le)(le)廣(guang)泛的(de)(de)(de)(de)應(ying)用[62]。王貴等(deng)[63]通過采用 7 種(zhong)緩蝕(shi)(shi)劑對油田采出水中碳鋼(gang)腐(fu)(fu)蝕(shi)(shi)失重進行(xing)評(ping)價(jia),實(shi)驗結(jie)果最后表(biao)明隨著(zhu)(zhu)緩蝕(shi)(shi)劑質(zhi)量濃度的(de)(de)(de)(de)增加,緩蝕(shi)(shi)率也不(bu)斷(duan)提高(gao)。SRB 廣(guang)泛存在于(yu)油氣(qi)管(guan)(guan)道中,它可(ke)通過自(zi)身的(de)(de)(de)(de)代(dai)謝活動影(ying)響(xiang)緩蝕(shi)(shi)劑膜(mo)層(ceng)(ceng)的(de)(de)(de)(de)完整性[36]。研究表(biao)明,在碳鋼(gang)材料表(biao)面覆(fu)蓋一(yi)層(ceng)(ceng)防(fang)護性涂層(ceng)(ceng)不(bu)僅能(neng)夠使(shi)基(ji)體表(biao)面不(bu)易被細(xi)菌(jun)(jun)附著(zhu)(zhu),同時(shi)也具(ju)有(you)(you)(you)殺菌(jun)(jun)防(fang)護的(de)(de)(de)(de)作用 [26]。目前(qian)(qian)油氣(qi)管(guan)(guan)道多(duo)為碳鋼(gang)材質(zhi),易引起 SRB 的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi),涂層(ceng)(ceng)保(bao)護是一(yi)種(zhong)有(you)(you)(you)效的(de)(de)(de)(de)防(fang)腐(fu)(fu)蝕(shi)(shi)手段(duan),如在金屬表(biao)面電(dian)鍍鉻(ge)鋅(xin)、涂覆(fu)環氧樹脂及聚乙烯等(deng)都(dou)可(ke)以(yi)使(shi)腐(fu)(fu)蝕(shi)(shi)得到(dao)控(kong)制。不(bu)僅如此(ci),為了(le)(le)提高(gao)油氣(qi)管(guan)(guan)道的(de)(de)(de)(de)耐腐(fu)(fu)蝕(shi)(shi)性能(neng),還(huan)可(ke)以(yi)在管(guan)(guan)道材料上施加一(yi)層(ceng)(ceng)鈦或形成鈦合金,以(yi)防(fang)止 SRB引起的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)。

3.4 陰極(ji)極(ji)化保護(hu)手(shou)段

陰(yin)極(ji)(ji)(ji)保(bao)(bao)(bao)護(hu)方(fang)法(fa)通(tong)常用(yong)(yong)(yong)于(yu)防(fang)止(zhi)厭氧(yang)微生(sheng)物(wu)(wu)對(dui)碳鋼(gang)的(de)(de)(de)腐(fu)蝕(shi),其不僅經(jing)濟實用(yong)(yong)(yong),而(er)且是一(yi)(yi)種(zhong)無(wu)(wu)毒、無(wu)(wu)污染的(de)(de)(de)腐(fu)蝕(shi)防(fang)護(hu)方(fang)法(fa),符合當前綠色環保(bao)(bao)(bao)的(de)(de)(de)發(fa)展趨(qu)勢[36]。丁清(qing)苗等(deng)[66]通(tong)過表(biao)面(mian)觀察及(ji)電化(hua)學方(fang)法(fa)研究(jiu)(jiu)了(le) X80 鋼(gang)在(zai)含有(you)(you)SRB 的(de)(de)(de)海(hai)水(shui)溶(rong)液中陰(yin)極(ji)(ji)(ji)保(bao)(bao)(bao)護(hu)準則的(de)(de)(de)適(shi)用(yong)(yong)(yong)性,結果發(fa)現陰(yin)極(ji)(ji)(ji)保(bao)(bao)(bao)護(hu)對(dui)在(zai)含有(you)(you) SRB 的(de)(de)(de)微生(sheng)物(wu)(wu)海(hai)水(shui)中 X80 鋼(gang)表(biao)面(mian)的(de)(de)(de)陰(yin)極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)起到(dao)了(le)一(yi)(yi)定促進作(zuo)用(yong)(yong)(yong),且極(ji)(ji)(ji)化(hua)電位(wei)的(de)(de)(de)選(xuan)擇會受到(dao)極(ji)(ji)(ji)化(hua)時間的(de)(de)(de)影(ying)響(xiang)。李雨(yu)等(deng)[67]研究(jiu)(jiu)了(le) FTO 導電玻(bo)璃的(de)(de)(de)恒電位(wei)極(ji)(ji)(ji)化(hua),結果表(biao)明陰(yin)極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)作(zuo)用(yong)(yong)(yong)能抑(yi)制(zhi)(zhi) SRB 等(deng)細菌與樣品表(biao)面(mian)生(sheng)物(wu)(wu)膜(mo)接觸,且其抑(yi)制(zhi)(zhi)作(zuo)用(yong)(yong)(yong)與表(biao)面(mian)鈣沉積無(wu)(wu)關。在(zai)實際海(hai)洋工程(cheng)應用(yong)(yong)(yong)中,通(tong)常利用(yong)(yong)(yong)陰(yin)極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)保(bao)(bao)(bao)護(hu)方(fang)法(fa)來阻礙 SRB 對(dui)碳鋼(gang)材料(liao)的(de)(de)(de)腐(fu)蝕(shi),而(er)且抑(yi)制(zhi)(zhi)效(xiao)果非常顯著(zhu)。陰(yin)極(ji)(ji)(ji)極(ji)(ji)(ji)化(hua)作(zuo)為一(yi)(yi)種(zhong)綠色經(jing)濟的(de)(de)(de)防(fang)腐(fu)蝕(shi)手段,可以抑(yi)制(zhi)(zhi)生(sheng)物(wu)(wu)的(de)(de)(de)附(fu)(fu)著(zhu)與生(sheng)長,但由于(yu)材料(liao)方(fang)面(mian)的(de)(de)(de)差異(yi)性,其對(dui) SRB 吸附(fu)(fu)的(de)(de)(de)抑(yi)制(zhi)(zhi)機制(zhi)(zhi)還有(you)(you)待進一(yi)(yi)步(bu)的(de)(de)(de)研究(jiu)(jiu)。

3.5 其他防腐蝕手段(duan)

除了(le)(le)以(yi)(yi)上提到(dao)(dao)的(de)常(chang)見的(de) SRB 腐蝕(shi)控制(zhi)(zhi)手(shou)段外,還有一些新的(de)微生物防(fang)(fang)腐蝕(shi)思路被越(yue)來(lai)越(yue)多的(de)研(yan)(yan)究者所提出。例如,SRB 生物膜分泌(mi)的(de) EPS 防(fang)(fang)腐蝕(shi)研(yan)(yan)究就引起(qi)了(le)(le)人們的(de)關注,EPS 在鋼(gang)鐵(tie)材料表面形成致密鈍化保護(hu)層后,可以(yi)(yi)防(fang)(fang)止(zhi)(zhi)氧氣等(deng)陰極去極化劑到(dao)(dao)達(da)(da)金屬表面以(yi)(yi)阻止(zhi)(zhi)電(dian)子傳遞[19],從而防(fang)(fang)止(zhi)(zhi)腐蝕(shi)的(de)發生。另外,通過(guo)改變 SRB 的(de)生長(chang)(chang)環(huan)境來(lai)控制(zhi)(zhi)其正常(chang)的(de)生長(chang)(chang)繁(fan)殖也能(neng)達(da)(da)到(dao)(dao)防(fang)(fang)腐的(de)效果,例如可以(yi)(yi)調節溫度、pH 值和鹽濃(nong)度等(deng)抑制(zhi)(zhi) SRB 的(de)生長(chang)(chang)。在循環(huan)水(shui)體系中(zhong),通過(guo)對(dui)水(shui)源的(de)防(fang)(fang)污、除垢以(yi)(yi)及(ji)添加適(shi)量的(de)抗菌(jun)元素[68]等(deng)能(neng)夠減(jian)少(shao)細菌(jun)的(de)來(lai)源,對(dui)冷(leng)卻塔遮光、防(fang)(fang)塵等(deng)也可抑制(zhi)(zhi)細菌(jun)繁(fan)殖。


4 總(zong)結(jie)與展望

本文重點綜(zong)述了SRB 對典(dian)型鋼(gang)材腐蝕(shi)研究現狀(zhuang)、SRB 與一些腐蝕(shi)影響因素之間(jian)的協同作(zuo)

用(yong)(yong)及(ji)目前普遍采用(yong)(yong)的(de)(de)(de)(de)(de)MIC 控制方法。近年來,對(dui)SRB 腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)行為(wei)的(de)(de)(de)(de)(de)研(yan)(yan)(yan)究(jiu)主要集中(zhong)在有(you)機(ji)(ji)酸、H2S和FeS 等(deng)與生(sheng)物膜之(zhi)間(jian)的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)機(ji)(ji)理(li)以(yi)及(ji)SRB 微生(sheng)物細(xi)胞與鐵之(zhi)間(jian)的(de)(de)(de)(de)(de)直接電子相(xiang)互(hu)作(zuo)用(yong)(yong)方面。隨著(zhu)對(dui)SRB 研(yan)(yan)(yan)究(jiu)的(de)(de)(de)(de)(de)不(bu)斷深入,越(yue)來越(yue)多的(de)(de)(de)(de)(de)研(yan)(yan)(yan)究(jiu)人員發(fa)現(xian)SRB 生(sheng)物膜不(bu)僅能加速腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi),而且在一定(ding)條件(jian)下還能抑制腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)的(de)(de)(de)(de)(de)發(fa)生(sheng),其抑制效果遠遠優于(yu)某些防腐(fu)(fu)(fu)(fu)(fu)涂層,因此(ci)可以(yi)利用(yong)(yong)SRB這一生(sheng)理(li)特(te)(te)性來控制腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)以(yi)減少對(dui)金屬材料造成的(de)(de)(de)(de)(de)經(jing)濟損失。對(dui)于(yu)相(xiang)關研(yan)(yan)(yan)究(jiu)學者而言,應當(dang)結合(he)現(xian)代科技技術(shu)不(bu)斷研(yan)(yan)(yan)究(jiu)和分(fen)析SRB 腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)行為(wei)特(te)(te)點,從而更深入了解SRB 的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)機(ji)(ji)理(li)。同(tong)(tong)時,還應意識到SRB 往(wang)往(wang)會(hui)與其他腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)介質中(zhong)的(de)(de)(de)(de)(de)影響(xiang)因素之(zhi)間(jian)發(fa)生(sheng)協同(tong)(tong)作(zuo)用(yong)(yong),因此(ci)在研(yan)(yan)(yan)究(jiu)過程中(zhong)采取行之(zhi)有(you)效的(de)(de)(de)(de)(de)方法來合(he)理(li)評價SRB 的(de)(de)(de)(de)(de)作(zuo)用(yong)(yong)。

近年來,有(you)(you)關(guan)(guan)(guan)海洋(yang)方(fang)(fang)(fang)面(mian)的(de)(de)研(yan)(yan)究不斷(duan)成(cheng)為熱(re)點。眾(zhong)所周知(zhi),我(wo)國是(shi)海洋(yang)大(da)國,但不是(shi)海洋(yang)強(qiang)國,海洋(yang)腐蝕(shi)(shi)(shi)方(fang)(fang)(fang)面(mian)面(mian)臨著許多關(guan)(guan)(guan)鍵科學(xue)問題有(you)(you)待解決。值得一提的(de)(de)是(shi),解決海洋(yang)環(huan)境(jing)中的(de)(de)材料腐蝕(shi)(shi)(shi)問題是(shi)國家重(zhong)大(da)需求(qiu),未來有(you)(you)關(guan)(guan)(guan)海洋(yang)方(fang)(fang)(fang)面(mian)的(de)(de)微(wei)生(sheng)(sheng)物(wu)(wu)腐蝕(shi)(shi)(shi)防(fang)(fang)(fang)護(hu)的(de)(de)研(yan)(yan)究越(yue)來越(yue)趨向于綠色(se)環(huan)保,更多的(de)(de)是(shi)要(yao)在傳統防(fang)(fang)(fang)護(hu)方(fang)(fang)(fang)法的(de)(de)基礎(chu)上著重(zhong)研(yan)(yan)究生(sheng)(sheng)物(wu)(wu)防(fang)(fang)(fang)治方(fang)(fang)(fang)法。在今(jin)后微(wei)生(sheng)(sheng)物(wu)(wu)腐蝕(shi)(shi)(shi)研(yan)(yan)究中,有(you)(you)關(guan)(guan)(guan)MIC 的(de)(de)作用機(ji)理及其防(fang)(fang)(fang)護(hu)對(dui)策依舊是(shi)研(yan)(yan)究的(de)(de)重(zhong)點,有(you)(you)必要(yao)加強(qiang)物(wu)(wu)種多樣性的(de)(de)研(yan)(yan)究。此外,通過光譜電化學(xue)、分(fen)子生(sheng)(sheng)物(wu)(wu)學(xue)和(he)微(wei)區電化學(xue)腐蝕(shi)(shi)(shi)觀察,研(yan)(yan)究有(you)(you)關(guan)(guan)(guan)SRB 菌株(zhu)的(de)(de)呼吸(xi)代謝機(ji)制和(he)直接電子傳遞途徑,對(dui)今(jin)后微(wei)生(sheng)(sheng)物(wu)(wu)腐蝕(shi)(shi)(shi)行(xing)為的(de)(de)研(yan)(yan)究和(he)探索具有(you)(you)重(zhong)要(yao)意義。


參考(kao)文(wen)獻

[1] Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J.

Chin. Soc. Corros. Prot., 2018, 38(1): 1-9

(管方, 翟曉凡(fan), 段繼周(zhou)等. 陰極(ji)極(ji)化對硫酸(suan)鹽還原菌(jun)腐蝕(shi)影響的研究進展 [J]. 中國腐蝕(shi)與防護(hu)學報, 2018, 38(1): 1-9)

[2] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China., 2017, 44(7): 1699

(黃燁, 劉雙(shuang)江, 姜成(cheng)英. 微(wei)(wei)生(sheng)(sheng)物(wu)(wu)腐蝕(shi)(shi)及腐蝕(shi)(shi)機理研究(jiu)進展(zhan) [J]. 微(wei)(wei)生(sheng)(sheng)物(wu)(wu)學(xue)通報, 2017, 44(7): 1699-1713)[3] Xiong F P, Wang J L, Fadhil A A, et al. Research Progress of Sulfate-reducing Bacteria Induced SCC [J]. Corros. Sci. Prot. Technol.,

2018, 30(3): 213-221

(熊福平(ping), 王(wang)軍磊, Fadhil A A等(deng). 硫酸鹽還原菌(jun)誘導應力(li)腐蝕(shi)開(kai)裂研究進展 [J]. 腐蝕(shi)科學(xue)與防(fang)護技術, 2018, 30(3): 213-221)

[4] Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527(7579): 441-442

[5] Xu P, Ren H Y, Wang C Z, et al. Research Progress on Mixture Microbial Corrosion and Analytical Method on Metal Surface [J]. Surf

Technol., 2019, 48(1): 216-224

(許萍, 任恒(heng)陽(yang), 汪長征等. 金(jin)屬表(biao)面混合(he)微生物腐(fu)蝕(shi)及(ji)分析(xi)方法研(yan)究進展 [J]. 表(biao)面技術, 2019, 48(1): 216-224)

[6] Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel

and modern weathering structural steel [J]. Corros Sci, 2016, 113

[7] Wu M, Guo Z W, Xie F, et al. Research progress of corrosion behavior of pipeline steel under the action of anion and sulfate reducing

bacteria [J]. Mater Rep, 2018, 32(19): 158-166

(吳明, 郭(guo)紫薇, 謝飛(fei)等. 陰(yin)離(li)子和硫酸(suan)鹽還(huan)原菌作用下管線鋼腐(fu)蝕行為的研究進展 [J]. 材料導報, 2018, 32(19): 158-166)

[8] Deng S Y, Qiu Q H. Current situation and Prospect of research on biological corrosion of steel in China [J]. Surf Technol., 2019, 48(8):

239

(鄧紹云, 邱清(qing)華. 我國鋼(gang)材生物腐(fu)蝕研究現狀與(yu)展望 [J]. 表面(mian)技術, 2019, 048(008): 239-246)

[9] Liu J, Fan H B, Xu H P, et al. Electrochemical corrosion behavior of carbon steel in microbial media [J]. J. Electrochem, 2016, 8(2):

186

(劉(liu)靖, 范洪波, 徐海平等. 碳(tan)鋼在(zai)微生物介質中(zhong)的(de)腐蝕電化(hua)(hua)學(xue)(xue)行為 [J]. 電化(hua)(hua)學(xue)(xue), 2016, 8(02): 186-190)

[10] Ma L, Xie J F, Xiong M X, et al. Effect of sulfate reducing bacteria on Pitting Behavior of carbon steel in H2S environment [J].

Corros. Prot, 2018, 039(007): 555-561

(馬磊, 謝俊峰(feng), 熊茂(mao)縣(xian)等. H2S 環境中(zhong)硫酸鹽還原菌對碳鋼點蝕行為的影響(xiang) [J]. 腐蝕與(yu)防護, 2018, 039(007): 555-561)

[11] Zheng M L. Corrosion behavior of sulfate reducing bacteria on carbon steel [D]. Tianjin: Civil Aviation University of China, 2015

(鄭美(mei)露(lu). 硫酸鹽還原菌對碳鋼腐(fu)蝕(shi)行為的研究 [D]. 天(tian)津: 中國民航大學,2015)

[12] Fan M M, Liu H, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water [J].

Mater. Corros, 2013, 64(3): 242-246

[13] Ge L, Wu M, Xie F, et al. Effect of growth process of sulfate reducing bacteria on Corrosion Behavior of X70 Steel [J]. Mater for

Mecha Eng, 2016, 40(8): 94-98

(葛嵐(lan), 吳明(ming), 謝飛等(deng). 硫酸鹽還原菌的(de)生長過程對 X70 鋼腐蝕(shi)行為(wei)的(de)影響 [J]. 機械工程材料, 2016, 40(8): 94-98)

[14] Zhai F T, Li H H, Xu C M. Corrosion Behavior of 2507 Duplex Stainless Steel in Cooling Water with Different SRB Content[J]. Hot

Working Technology, 2016 (18): 105-108

[15] Ohashi K, Kobayashi R, Stott J F D, et al.. Marine crevice corrosion of stainless steel alloys under biofilmed and sterile conditions

[C]. NACE International, 2016,(June 14).

[16] Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbial corrosion [J]. Surf Technol., 2019, 11: 59-68

(呂(lv)美(mei)英, 李振欣, 杜敏等. 微生物(wu)腐蝕(shi)中生物(wu)膜的生成、作用(yong)與(yu)演變(bian) [J]. 表面(mian)技術, 2019, 11: 59-68)

[17] Videla H A, Herrera L K. Understanding microbial

Biodeterioration & Biodegradation, 2009, 63(7): 896-900

inhibition of corrosion. A comprehensive overview [J].

International

[18] Guo Z W, Guo N, Liu T, et al. Research progress in mechanism of microbial corrosion inhibition and biomineralization [J]. Surf

Technol., 2018, 47(2): 144-150

(郭章偉, 郭娜, 劉(liu)濤等. 微生(sheng)物(wu)抑(yi)制(zhi)腐蝕機(ji)理(li)及生(sheng)物(wu)礦化(hua)機(ji)理(li)研究進展 [J]. 表面技術(shu), 2018, 47(2): 144-150)

[19] Xu P, Zhai Y J, Wang J, et al. Understanding the research progress of biofilm microbial corrosion protection from a new perspective

[J]. Corros. Sci. Prot. Technol., 2016, 28(4): 356-360

(許(xu)萍, 翟(zhai)羽佳(jia), 王婧等. 從新(xin)的視(shi)角理解生物膜--微(wei)生物防(fang)腐蝕(shi)研究進展 [J]. 腐蝕(shi)科學與防(fang)護技(ji)術, 2016, 28(4): 356-360)

[20] Yuan S J, Liang B, Zhao Y, et al. Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater

Containing Inorganic Sulphide and Sulphate-reducing Bacteria [J]. Corros Sci, 2013, 74: 353-366.[21] Wu Y N. Study on antibacterial and anticorrosive properties of composite coating based on cuprous oxide [D]. Wu Han: Huazhong

University of Science and Technology, 2016

(吳亞(ya)楠. 基于氧化(hua)亞(ya)銅的復合涂層的抗菌防腐性能探(tan)究 [D]. 武漢(han): 華中科技大(da)學, 2016)

[22] Liu C P, Han X. Effect of S2- in produced water of CO2 bearing Oilfield on Corrosion Behavior of carbon steel [J]. Industrial Water

Treatment, 2019, 039(005): 57-60

(劉(liu)春平, 韓霞. 含CO2油田(tian)采出水(shui)中 S2-對碳(tan)鋼腐蝕行(xing)為的影響 [J]. 工業(ye)水(shui)處(chu)理(li), 2019, 039(005): 57-60)

[23] Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L

surface in circulating cooling water system [J]. Frontiers of Environmental ence & Engineering, 2017, 11(2): 143-156.

[24] Shu Y, Yan M C, Wei Y H, et al. Characteristics and corrosion behavior of SRB biofilm on X80 Pipeline Steel [J]. Acta Metall Sin,

2018, 54(10): 68-76

(舒韻, 閆茂成(cheng), 魏英華等. X80 管(guan)線鋼表面 SRB生物膜特征及腐蝕行為 [J]. 金屬(shu)學(xue)報, 2018, 54(10): 68-76)

[25] Xiang L B, Zhang J C, Liu X R, et al. Microbiological Influenced Corrosion and Microbiological Influenced Corrosion

Inhibition-Overview and a Case Application in Oilfield Produced Water [J]. Corros. Sci. Prot. Technol., 2019, 31(1)

(向龍斌(bin), 張吉(ji)昌, 劉心蕊等. 微生(sheng)物腐(fu)(fu)蝕與采出(chu)水的(de)微生(sheng)物防(fang)腐(fu)(fu)蝕-回顧與應(ying)用實(shi)例 [J]. 腐(fu)(fu)蝕科學與防(fang)護技術(shu), 2019, 31(1))

[26] Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion and protection of metal materials [J]. Euipment

Environmental Engineering, 2015, 12(1): 59-65

(楊家東(dong), 許鳳(feng)玲, 侯健等. 金屬材(cai)料的(de)微生物腐蝕與防護研究進展 [J]. 裝(zhuang)備(bei)環(huan)境工程, 2015, 12(1): 59-65)

[27] Enning D, Garrelfs J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem [J]. Appl Environ Microbiol,

2014, 80(4): 1226.

[28] Liu H W, Xu D K, Wu Y N, et al. Research Progress in Corrosion of Steels Induced by Sulfate Reducing Bacteria [J]. Corros. Sci.

Prot. Technol, 2015, 27(5): 409-418

(劉宏偉, 徐大可, 吳(wu)亞(ya)楠等. 微生物生物膜下的(de)鋼鐵材料腐(fu)蝕(shi)研究進展(zhan) [J]. 腐(fu)蝕(shi)科(ke)學(xue)與(yu)防護技術(shu), 2015, 27(5): 409-418)

[29] Liu H W, Liu H F. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria [J]. J. Chin. Soc. Corros. Prot., 2017,

(3): 3

(劉(liu)宏偉, 劉(liu)宏芳. 鐵氧化菌引起的鋼鐵材料(liao)腐蝕(shi)研究進展 [J]. 中國腐蝕(shi)與(yu)防(fang)護(hu)學報(bao), 2017, (03): 3-14)

[30] Blenkinsopp S A, Khoury A E, Costerton J W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa

biofilms [J]. Appl Environ Microbiol, 1992, 58(11): 3770-3773

[31] Xu P, Si S, Zhang Y J, et al. Effect of EPS on Anti-corrosion Behavior of Metals [J]. Corros. Prot, 2016, 037(005): 384-387, 429

(許萍, 司帥, 張雅君(jun)等. 微生物胞外(wai)聚合物(EPS)對金(jin)屬耐蝕性的影響 [J]. 腐蝕與防(fang)護, 2016, 037(005): 384-387, 429)

[32] Boukhalfa H , Reilly S D , Michalczyk R, et al. Iron(III) Coordination Properties of a Pyoverdin Siderophore Produced by

Pseudomonas putida ATCC 33015 [J]. Inorgan Chemi, 2006, 45(14): 5607-5616

[33] Dong Z H, Tao L, Hong F L. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J].

Biofouling, 2011, 27(5): 487-495

[34] Shi X B, Xu D K, Yan M C, et al. Study on microbial corrosion behavior of new pipeline steel containing Cu [J]. Acta Metall Sin,

2017, 53(2): 153-162

(史顯波, 徐大可, 閆(yan)茂(mao)成等(deng). 新型含 Cu 管線鋼的微(wei)生物腐蝕行為研(yan)究 [J]. 金屬學報, 2017, 53(2): 153-162)

[35] Zhang L, Han J L, Zhu M J, et al. Corrosion and protection of sulfate reducing bacteria to metals in marine environment [J]. China

Water Trans, 2017, 17(2): 93-96

(張力, 韓金陸, 祝(zhu)孟潔(jie)等(deng). 海洋環境(jing)中(zhong)硫酸鹽還(huan)原菌對金屬的腐蝕及(ji)防護 [J]. 中(zhong)國水(shui)運(yun)(下半月), 2017, 17(2): 93-96)

[36] Li X, Du M. Research Progress on the Effect of Cathodic Polarization on Microbiologically Influenced Corrosion [J]. Corros. Sci.

Prot. Technol., 2017, 29(5): 561-566

(李霞, 杜敏. 陰極極化對微生物腐(fu)蝕的影響研(yan)究進展 [J]. 腐(fu)蝕科(ke)學(xue)與(yu)防護技術, 2017, 29(5): 561-566)

[37] Cai F. Effect of sulfate reducing bacteria on casing corrosion and its control technology [J]. Building mater. decoration, 2019, (21)

(蔡峰. 硫(liu)酸(suan)鹽還原菌對(dui)油田套管腐蝕的影響及控(kong)制(zhi)技術 [J]. 建材(cai)與裝飾, 2019, (21))[38] Xia J, Xu D K, Nan L, et al. Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of

Bioelectrochemistry and Bio-energetics [J]. Chinese Journal of Materials Research, 2016, 30(03):161-170.

(夏進, 徐大可, 南黎等. 從(cong)生物能量學和生物電化(hua)學角(jiao)度研(yan)究(jiu)金屬(shu)微生物腐蝕的機(ji)理[J]. 材料研(yan)究(jiu)學報, 2016,

30(03):161-170)

[39] Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural

sulfatereducing bacterium [J]. Geobiology, 2012, 10: 150-162

iron in interstratified illite-smectite minerals by a

[40] Liu D, Yang C T, Zhou E Z, et al. Progress in Microbiologically Influenced Corrosion of Metallic Materials in Marine Environment

[J]. Surf Technol., 2019 (7): 166-174.

(劉丹, 楊純田, 周恩澤等. 海洋用金屬材料(liao)的微(wei)生物腐(fu)蝕研(yan)究進展(zhan)[J]. 表(biao)面技術, 2019 (7):166-174)

[41] Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive

biogenic mineral crust [J]. Environmental Microbiology, 2012, 14(7): 1772-1787.

[42] Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing

bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100(NOV.): 484-495

[43] Sun F Y, Yang X, Cao B. Effect of SRB+IOB on Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Yingtan Soil

[J]. Mater Rep, 2019(S1)

(孫福洋, 楊旭, 曹博. SRB+IOB對(dui)X100 管線鋼(gang)在鷹潭(tan)土壤模(mo)擬溶液中(zhong)腐蝕(shi)行為的影響 [J]. 材料導報, 2019(S1))

[44] Zheng M L. Effect of anions in soil on microbial corrosion of X70 Steel [J]. Shandong Industrial Technology, 2015, (7): 224

(鄭美露(lu).土壤中陰離子對(dui) X70 鋼微生物(wu)腐(fu)蝕的影響 [J]. 山東(dong)工(gong)業技(ji)術,2015, (7): 224)

[45] Xin Z, Yu Y, Wang Y C, et al. Effect of Cl- concentration on Corrosion Behavior of 316L stainless steel in sulfate reducing bacteria

system [J]. Mater. Prot., 2014, 47(5):57-60

(辛征,于勇,王元春等.Cl-濃度對硫酸鹽(yan)還原菌體系中 316L 不銹鋼腐蝕行為的影響(xiang) [J].材料保護, 2014, 47(5): 57-60)

[46] Zhang Q, Zhao X D, Li Q C, et al. Effect of Cl- concentration on Corrosion Behavior of Q235 steel in solution containing sulfate

reducing bacteria[J]. Mechanical Engineer, 2017(6): 8-10

(張(zhang)倩, 趙曉(xiao)棟(dong), 李慶(qing)超(chao)等. Cl-濃度對(dui)Q235 鋼在含(han)有硫酸鹽還原菌(jun)的溶液中腐(fu)蝕行(xing)為的影(ying)響 [J]. 機械工程師, 2017(6): 8-10)

[47] Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors on SRB growth and corrosion [J].

Petrochemi industry appli, 2015, 34(1): 13-15

(孟章進, 吳偉林(lin), 祁建杭等. 井筒環境因(yin)素(su)對 SRB 生長及腐蝕影響分析 [J]. 石油化工應用, 2015, 34(1): 13-15)

[48] Wu T Q, Zhou S F, Wang X M, et al. Bacteria Assisted Cracking of X80 Pipeline Steel under the Actions of Elastic and Plastic

Stresses [J]. Surf Technol., 2019(7).

(吳堂清, 周昭芬, 王鑫銘等. 彈塑性應力作用下 X80 管線(xian)鋼的菌致開裂行為 [J]. 表(biao)面技術, 2019(7))

[49] Wang D, Xie F, Wu M, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel [J]. T Mater

Heat Treat, 2016, 37(5): 198-203

(王丹, 謝飛, 吳(wu)明等. 硫酸(suan)鹽還原(yuan)菌對 X80 鋼(gang)應力腐蝕開裂行(xing)為的影(ying)響(xiang) [J]. 材料熱處(chu)理(li)學(xue)報, 2016, 37(5): 198-203)

[50] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil

solution [J]. Corros Sci, 2014, 83(JUN.): 38-47

[51] Liu H W, Zhang F, Wu Y N, et al. Inhibition Behavior of Dodecylamine Inhibitor in Oilfield Produced Water Containing Saturated

CO2 and SRB [J]. Corros. Prot, 2015, 036(002): 137-143

(劉宏偉, 張帆, 吳(wu)亞楠(nan)等. 油田產出水(shui)中飽和(he) CO2 和(he) SRB 共(gong)存條(tiao)件下十二胺緩蝕(shi)劑的(de)緩蝕(shi)行為 [J]. 腐(fu)蝕(shi)與防護, 2015,

036(002): 137-143)

[52] Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB Influenced Corrosion Behavior of X70 Steel in Near-neutral pH Solution

[J]. Corros. Sci. Prot. Technol., 2017, 029(002): 103-109

(陳旭, 高鳳嬌, 宋(song)武琦, 李(li)鑫,何川. CO2對 X70 鋼在近(jin)中性 pH 值溶液中硫酸(suan)鹽還原菌(jun)腐蝕行為的(de)影響 [J]. 腐蝕科學與(yu)防

護(hu)技術, 2017, 029(002): 103-109)

[53] Liu F L. Analysis of factors influencing corrosion of water injection system in block a of Jilin Oilfield [J]. Petroleum Knowledge,2019, 000(004): 44-45, 47 (劉(liu)鳳蘭. 吉林油田A區塊注水系統腐(fu)蝕影(ying)響因素(su)分析 [J]. 石油知(zhi)識, 2019, 000(004): 44-45, 47)

[54] Liu L Y, Zhang X M, Li L. Application of ultrasonic sterilization technology in food [J]. Food Science, 2006, 12: 778-780 (劉麗艷,張喜梅,李琳. 超聲波殺(sha)菌技(ji)術(shu)在食品(pin)中的(de)應用 [J]. 食品(pin)科學, 2006, 12: 778-780)

[55] Chen B, Liu H W, Wu Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium [J]. ECS Trans., 2014, 59: 439

[56] Chen B. Formation and corrosion electrochemical behavior of SRB biofilm under static magnetic field [D]. Wu Han: Huazhong University of Science and Technology, 2014

(陳碧. 靜磁場下 SRB生(sheng)物膜形成及腐蝕(shi)電(dian)化學行為 [D]. 武漢: 華中科技大學, 2014)

[57] Li K J, Zheng B J, Chen B, et al. Effect of magnetic field on microbiological corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33(6): 463-469 (李克娟, 鄭碧娟, 陳碧等(deng). 磁場對(dui) Q235 鋼微生物腐蝕行為(wei)的(de)影響 [J]. 中國腐蝕與防護(hu)學報(bao), 2013, 33(6): 463-469)

[58] Li J J, Liu Y M, Zhang X W, et al. Mechanism of metal corrosion caused by sulfate-reducing bacteria in the reinjection water in oilfields and its prevention and cure [J]. Industrial Water Treatment, 2007, 27(11): 4-7 (李家(jia)俊(jun),劉(liu)玉民,張香文等. 油田回注(zhu)水中硫(liu)酸鹽還原菌對金屬(shu)腐蝕的機理(li)及其防治方法 [J]. 工業(ye)水處理(li),2007, 27(11): 4-7)

[59] Xin Z. Effect of environmental factors on Corrosion Behavior of 316L stainless steel in medium containing sulfate reducing bacteria [D]. Yantai: Yantai University, 2014 (辛征. 環(huan)境因素對含(han)硫(liu)酸(suan)鹽還原(yuan)菌介質中 316L 不銹鋼(gang)腐蝕行為(wei)的(de)影響(xiang) [D]. 煙(yan)臺: 煙(yan)臺大學, 2014)

[60] Li Y Q. Present situation and development trend of Bactericides for oilfield production system [J]. Chemical Engineering Design Communications, 2016, 42(6): 21 (李(li)延慶. 油(you)田生產(chan)系統(tong)用(yong)殺菌劑的現狀及(ji)發展(zhan)趨勢 [J]. 化工設(she)計通訊, 2016, 42(6): 21)

[61] Liu H W, Liu H F, Qin S, et al. Investigation of Biomineralization Induced by Sulfate Reducing Bacteria in Sewage Gathering Pipelines in Oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27(1): 7-12 (劉宏偉, 劉宏芳, 秦雙等. 集輸(shu)管(guan)線硫酸鹽還原菌誘導生物礦化作(zuo)用(yong)調查 [J]. 腐蝕科學與防護技術(shu), 2015, 27(1): 7-12)

[62] Kan T T, Dong B H, Zhang H, et al. Selection and performance evaluation of corrosion inhibitor for CFD Oilfield [J]. Appl Chemi Industry, 2014 (闞濤濤, 董寶(bao)輝, 張環等. CFD油田緩蝕(shi)劑的(de)篩(shai)選與性(xing)能評價 [J]. 應用化工, 2014)

[63] Wang G, Duan L D, Wang H, et al. Selection and performance evaluation of corrosion inhibitor for carbon steel in oilfield produced water [J]. Journal of Yangtze University (Natural Science Edition), 2019, (5) (王(wang)貴, 段立(li)東, 王(wang)歡等. 油(you)田采出水中碳(tan)鋼(gang)腐蝕(shi)緩(huan)蝕(shi)劑的篩(shai)選與性能評價 [J]. 長江大學學報(自然科學版), 2019, (5))

[64] Guo J K, Huang M H, Ma Y L. Corrosion of 304 stainless steel by sulfate reducing bacteria and heterotrophic nitrifying bacteria [J]. Industrial Water Treatment, 2016, 36(12): 70-72 (郭軍科, 黃美慧, 馬有良. 硫酸鹽還原菌和異養硝化菌對 304 不銹鋼腐蝕研究 [J]. 工業水處理(li), 2016, 36(12): 70-72)

[65] Zong Y, Xie F, Wu M, et al. Research Progress in Influencing Factors of Corrosion by Sulfate-reducing Bacteria and Corresponding Antisepsis Techniques [J]. Surf Technol., 2016, 045(003): 24-30 (宗(zong)月, 謝(xie)飛, 吳(wu)明等(deng). 硫酸鹽(yan)還(huan)原(yuan)菌腐(fu)蝕影響因素及防腐(fu)技(ji)(ji)術的研(yan)究進展(zhan) [J]. 表(biao)面技(ji)(ji)術, 2016, 045(003): 24-30)

[66] Ding Q M, Fan Y M, Zhang Y F. Applicability of cathodic protection criteria for X80 steel in seawater containing SRB [J]. J Marin Sci, 2016, 34(3): 19-24 (丁(ding)清苗(miao), 范(fan)玥銘, 張迎芳. X80 鋼在含有 SRB的(de)海水溶液中陰極(ji)保護準則適(shi)用(yong)性 [J]. 海洋學研究, 2016, 34(3): 19-24)

[67] Li Y. Study on antibacterial mechanism of cathodic polarization [D]. Dalian: Dalian University of Technology, 2013 (李雨. 陰極極化的抑菌機理研究(jiu) [D]. 大(da)連: 大(da)連理工大(da)學, 2013)

[68] Hong D, Cao G, Qu J, et al. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites[J]. J Mater Sci Technol, 2018, 34(12): 2359-2367.

免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。