埋地金屬管道交流電腐蝕研究進展
摘(zhai)要:分別從(cong)交流(liu)電腐蝕的(de)(de)(de)特點、機理、影(ying)響因(yin)素以(yi)及對(dui)陰極保護和(he)微(wei)生(sheng)物腐蝕影(ying)響的(de)(de)(de)角度,對(dui)近年來國內外(wai)開展的(de)(de)(de)交流(liu)電腐蝕研(yan)究進(jin)行系統綜(zong)(zong)述(shu)。通過(guo)對(dui)目前(qian)研(yan)究中(zhong)存在(zai)的(de)(de)(de)重點問題進(jin)行綜(zong)(zong)合分析(xi),展望這一領域(yu)的(de)(de)(de)研(yan)究前(qian)景及發展趨勢,為相(xiang)關領域(yu)的(de)(de)(de)研(yan)究人員提(ti)供新思路(lu)。
關鍵(jian)詞: 交流電; 埋地管道; 腐蝕(shi)機理(li); 影響因(yin)素; 陰極保護(hu)
近年(nian)來,隨著西(xi)電(dian)東(dong)(dong)送、西(xi)氣東(dong)(dong)輸(shu)工(gong)程的(de)(de)(de)(de)建設(she)和城市軌道(dao)(dao)交(jiao)(jiao)(jiao)通的(de)(de)(de)(de)快速發展,高(gao)(gao)壓(ya)(ya)(ya)、特高(gao)(gao)壓(ya)(ya)(ya)輸(shu)電(dian)工(gong)程與(yu)埋(mai)地油氣管(guan)(guan)(guan)(guan)道(dao)(dao)鄰(lin)近的(de)(de)(de)(de)并行或交(jiao)(jiao)(jiao)叉鋪(pu)設(she)情況已(yi)不可避免,甚至(zhi)都集中(zhong)在一(yi)個(ge)(ge)局部(bu)(bu)地區(qu)形成所謂的(de)(de)(de)(de)“公共走廊”。輸(shu)電(dian)線路對鄰(lin)近埋(mai)地油氣管(guan)(guan)(guan)(guan)道(dao)(dao)的(de)(de)(de)(de)交(jiao)(jiao)(jiao)流(liu)電(dian) (AC) 腐(fu)(fu)蝕(shi)(shi)和直(zhi)流(liu)電(dian) (DC) 腐(fu)(fu)蝕(shi)(shi)影響問(wen)題日(ri)益(yi)突出,甚至(zhi)已(yi)威(wei)脅(xie)到國家(jia)能源輸(shu)送安全。2014年(nian),西(xi)氣東(dong)(dong)輸(shu)二線廣東(dong)(dong)段(duan)(duan)管(guan)(guan)(guan)(guan)道(dao)(dao)多個(ge)(ge)閥室(shi)引(yin)壓(ya)(ya)(ya)管(guan)(guan)(guan)(guan)放電(dian),引(yin)壓(ya)(ya)(ya)管(guan)(guan)(guan)(guan)絕緣卡套燒蝕(shi)(shi),個(ge)(ge)別(bie)閥室(shi)甚至(zhi)出現引(yin)壓(ya)(ya)(ya)管(guan)(guan)(guan)(guan)燒穿事(shi)故[1]。對日(ri)照-東(dong)(dong)明管(guan)(guan)(guan)(guan)道(dao)(dao)中(zhong)的(de)(de)(de)(de)三(san)個(ge)(ge)區(qu)段(duan)(duan)進行交(jiao)(jiao)(jiao)流(liu)干擾數(shu)據(ju)監(jian)測(ce)(ce)時顯示,較大的(de)(de)(de)(de)管(guan)(guan)(guan)(guan)道(dao)(dao)交(jiao)(jiao)(jiao)流(liu)干擾存在于管(guan)(guan)(guan)(guan)道(dao)(dao)與(yu)鐵路近距離平行與(yu)交(jiao)(jiao)(jiao)叉鋪(pu)設(she)區(qu)域(yu)[2]。2000年(nian)美國一(yi)條鋼管(guan)(guan)(guan)(guan)線雖然管(guan)(guan)(guan)(guan)道(dao)(dao)有著良好的(de)(de)(de)(de)溶結型環氧粉末防護層(ceng),然而(er)因高(gao)(gao)壓(ya)(ya)(ya)交(jiao)(jiao)(jiao)流(liu)輸(shu)電(dian)線路的(de)(de)(de)(de)干擾,1年(nian)后(hou)檢測(ce)(ce)發現該涂層(ceng)破損(sun)處的(de)(de)(de)(de)管(guan)(guan)(guan)(guan)道(dao)(dao)局部(bu)(bu)腐(fu)(fu)蝕(shi)(shi)速率高(gao)(gao)達10 mm/a[3]。埋(mai)地管(guan)(guan)(guan)(guan)道(dao)(dao)的(de)(de)(de)(de)交(jiao)(jiao)(jiao)流(liu)電(dian)腐(fu)(fu)蝕(shi)(shi)問(wen)題日(ri)益(yi)嚴重,已(yi)成為材料腐(fu)(fu)蝕(shi)(shi)領域(yu)的(de)(de)(de)(de)研究熱點(dian)。
國(guo)內(nei)(nei)外(wai)在AC腐(fu)蝕(shi)的(de)(de)(de)研(yan)(yan)究(jiu)方面(mian)起步均較(jiao)晚。早(zao)期研(yan)(yan)究(jiu)[4-7]表明,交流(liu)干(gan)擾對金(jin)屬(shu)管(guan)(guan)道腐(fu)蝕(shi)的(de)(de)(de)影(ying)響遠(yuan)遠(yuan)小于(yu)(yu)等量的(de)(de)(de)直流(liu)干(gan)擾,AC腐(fu)蝕(shi)的(de)(de)(de)效率也(ye)比較(jiao)低。一(yi)(yi)般認(ren)為埋地管(guan)(guan)道的(de)(de)(de)陰極(ji)保護(hu)系統可(ke)以(yi)(yi)有效地抑制腐(fu)蝕(shi)的(de)(de)(de)發生,因此埋地管(guan)(guan)道的(de)(de)(de)AC腐(fu)蝕(shi)問(wen)題(ti)在早(zao)期并沒有得(de)到較(jiao)大(da)的(de)(de)(de)重(zhong)視(shi)(shi)。然而(er)(er),近十幾年來,在國(guo)內(nei)(nei)外(wai)多地發生了(le)多起由(you)于(yu)(yu)AC腐(fu)蝕(shi)而(er)(er)造成(cheng)石油天(tian)然氣管(guan)(guan)道泄(xie)漏及穿孔的(de)(de)(de)案例(li)[8-10]。埋地管(guan)(guan)道的(de)(de)(de)AC腐(fu)蝕(shi)問(wen)題(ti)變得(de)日益嚴重(zhong),逐漸引起人們重(zhong)視(shi)(shi)。長期以(yi)(yi)來,圍(wei)繞(rao)金(jin)屬(shu)管(guan)(guan)道AC腐(fu)蝕(shi)問(wen)題(ti),國(guo)內(nei)(nei)外(wai)許多學者進行(xing)了(le)有益的(de)(de)(de)嘗試,取(qu)得(de)了(le)一(yi)(yi)定的(de)(de)(de)成(cheng)果。然而(er)(er),由(you)于(yu)(yu)AC腐(fu)蝕(shi)機(ji)理十分復雜,在AC腐(fu)蝕(shi)的(de)(de)(de)機(ji)理、評價、檢測(ce)方面(mian)仍存(cun)在許多難點問(wen)題(ti)亟待解決[11-15],需要進行(xing)系統的(de)(de)(de)深入研(yan)(yan)究(jiu)。本文(wen)綜述了(le)AC腐(fu)蝕(shi)問(wen)題(ti)的(de)(de)(de)研(yan)(yan)究(jiu)成(cheng)果和最新進展(zhan),討論了(le)AC腐(fu)蝕(shi)研(yan)(yan)究(jiu)中存(cun)在的(de)(de)(de)重(zhong)點問(wen)題(ti),對這(zhe)一(yi)(yi)領域(yu)的(de)(de)(de)研(yan)(yan)究(jiu)前(qian)景及發展(zhan)趨勢進行(xing)展(zhan)望,為相(xiang)關(guan)領域(yu)的(de)(de)(de)研(yan)(yan)究(jiu)提(ti)供借鑒。
1 AC干擾類型(xing)及腐蝕(shi)特(te)點
1.1 AC干擾類型
不(bu)同條件(jian)與(yu)(yu)環境(jing)下,高壓(ya)交(jiao)(jiao)流(liu)(liu)(liu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路對埋(mai)(mai)(mai)地(di)金(jin)屬管(guan)(guan)道(dao)(dao)的(de)(de)(de)(de)(de)交(jiao)(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)(rao)類型(xing)有著明顯的(de)(de)(de)(de)(de)差(cha)別,主(zhu)要有3種(zhong)情況[16-18],如(ru)圖1所示。(1) 電(dian)(dian)(dian)(dian)容耦(ou)合(he)干(gan)(gan)擾(rao)(rao):由于管(guan)(guan)線(xian)外表面有防護層的(de)(de)(de)(de)(de)存(cun)在,造成(cheng)高壓(ya)交(jiao)(jiao)流(liu)(liu)(liu)輸(shu)(shu)電(dian)(dian)(dian)(dian)系統與(yu)(yu)埋(mai)(mai)(mai)地(di)管(guan)(guan)道(dao)(dao)之(zhi)間(jian)產生(sheng)了一個由高壓(ya)交(jiao)(jiao)流(liu)(liu)(liu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路對管(guan)(guan)線(xian)的(de)(de)(de)(de)(de)耦(ou)合(he)電(dian)(dian)(dian)(dian)容和埋(mai)(mai)(mai)地(di)管(guan)(guan)線(xian)對地(di)的(de)(de)(de)(de)(de)電(dian)(dian)(dian)(dian)容兩者通過串連而成(cheng)的(de)(de)(de)(de)(de)電(dian)(dian)(dian)(dian)容。在管(guan)(guan)線(xian)建設期發生(sheng),當初處于埋(mai)(mai)(mai)地(di)且(qie)良好接地(di)時(shi),可以(yi)忽略不(bu)計(ji)[19]。(2) 電(dian)(dian)(dian)(dian)阻耦(ou)合(he)干(gan)(gan)擾(rao)(rao):這種(zhong)干(gan)(gan)擾(rao)(rao)是偶然的(de)(de)(de)(de)(de),并不(bu)是常(chang)態。只(zhi)有在高壓(ya)交(jiao)(jiao)流(liu)(liu)(liu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路出現(xian)故障,接地(di)極材(cai)料的(de)(de)(de)(de)(de)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)流(liu)(liu)(liu)入地(di)下,形成(cheng)干(gan)(gan)擾(rao)(rao)地(di)電(dian)(dian)(dian)(dian)場時(shi)才會發生(sheng)。(3) 電(dian)(dian)(dian)(dian)感(gan)(gan)耦(ou)合(he)干(gan)(gan)擾(rao)(rao):運用Faraday電(dian)(dian)(dian)(dian)磁(ci)感(gan)(gan)應定律(lv),埋(mai)(mai)(mai)地(di)管(guan)(guan)道(dao)(dao)上(shang)產生(sheng)感(gan)(gan)應電(dian)(dian)(dian)(dian)壓(ya)和感(gan)(gan)生(sheng)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu),這種(zhong)類型(xing)稱為(wei)電(dian)(dian)(dian)(dian)感(gan)(gan)耦(ou)合(he)干(gan)(gan)擾(rao)(rao)。干(gan)(gan)擾(rao)(rao)持續時(shi)間(jian)很長,是埋(mai)(mai)(mai)地(di)管(guan)(guan)道(dao)(dao)受到的(de)(de)(de)(de)(de)主(zhu)要的(de)(de)(de)(de)(de)交(jiao)(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)(rao)方式。輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路中(zhong)不(bu)平(ping)衡電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)的(de)(de)(de)(de)(de)大(da)小、與(yu)(yu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路平(ping)行的(de)(de)(de)(de)(de)管(guan)(guan)道(dao)(dao)長度、管(guan)(guan)道(dao)(dao)與(yu)(yu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路間(jian)的(de)(de)(de)(de)(de)距(ju)(ju)離(li)長短(duan)、土壤電(dian)(dian)(dian)(dian)阻率及(ji)防護層電(dian)(dian)(dian)(dian)阻等決定著管(guan)(guan)道(dao)(dao)的(de)(de)(de)(de)(de)感(gan)(gan)應電(dian)(dian)(dian)(dian)壓(ya)。高壓(ya)交(jiao)(jiao)流(liu)(liu)(liu)輸(shu)(shu)電(dian)(dian)(dian)(dian)線(xian)路中(zhong)的(de)(de)(de)(de)(de)供電(dian)(dian)(dian)(dian)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)及(ji)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)不(bu)平(ping)衡度越(yue)大(da),并且(qie)與(yu)(yu)埋(mai)(mai)(mai)地(di)管(guan)(guan)道(dao)(dao)間(jian)的(de)(de)(de)(de)(de)距(ju)(ju)離(li)越(yue)小,造成(cheng)交(jiao)(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)(rao)腐(fu)蝕(shi)的(de)(de)(de)(de)(de)危險性大(da)幅度上(shang)升,對保護電(dian)(dian)(dian)(dian)位的(de)(de)(de)(de)(de)測量造成(cheng)一定的(de)(de)(de)(de)(de)影響,嚴(yan)重的(de)(de)(de)(de)(de)話會導致判斷失誤,使陰極保護失效(xiao)或者直接損壞。
圖1 電(dian)容耦合,電(dian)阻耦合和電(dian)感耦合干擾示意圖
1.2 AC腐蝕(shi)的特點(dian)
AC腐(fu)(fu)蝕(shi)屬于干擾腐(fu)(fu)蝕(shi),與自(zi)然腐(fu)(fu)蝕(shi)相比存(cun)在(zai)明(ming)顯的差異,主要(yao)(yao)表現(xian)為[20,21]:(1) 交流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)大小和(he)方(fang)向(xiang)瞬間變(bian)化比自(zi)然腐(fu)(fu)蝕(shi)的電(dian)(dian)(dian)(dian)化學(xue)反(fan)應(ying)時間要(yao)(yao)小幾個數(shu)量級;(2) AC腐(fu)(fu)蝕(shi)是在(zai)有外電(dian)(dian)(dian)(dian)場的存(cun)在(zai)下(xia)發(fa)(fa)生(sheng)(sheng)的,比自(zi)然腐(fu)(fu)蝕(shi)過程的內電(dian)(dian)(dian)(dian)場強(qiang)度(du)(du)大很多(duo),強(qiang)度(du)(du)高的線(xian)路感應(ying)造成(cheng)的交流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)壓(ya)幅(fu)值要(yao)(yao)比電(dian)(dian)(dian)(dian)極(ji)自(zi)身是直流(liu)(liu)(liu)自(zi)然極(ji)化電(dian)(dian)(dian)(dian)位高十(shi)數(shu)倍;(3) 在(zai)改(gai)變(bian)迅速且強(qiang)度(du)(du)十(shi)分大的交流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)場作用下(xia),特(te)(te)定化學(xue)反(fan)應(ying)發(fa)(fa)生(sheng)(sheng)的幾率顯著上升,發(fa)(fa)生(sheng)(sheng)反(fan)應(ying)的速度(du)(du)加(jia)快;(4) AC腐(fu)(fu)蝕(shi)發(fa)(fa)生(sheng)(sheng)在(zai)管(guan)道(dao)上交流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)過的地方(fang),一(yi)般(ban)在(zai)涂層缺陷處發(fa)(fa)生(sheng)(sheng),有局部腐(fu)(fu)蝕(shi)的特(te)(te)點,極(ji)易造成(cheng)穿孔腐(fu)(fu)蝕(shi)。自(zi)然條(tiao)件下(xia)的腐(fu)(fu)蝕(shi)一(yi)般(ban)都是均勻腐(fu)(fu)蝕(shi),穿孔腐(fu)(fu)蝕(shi)不(bu)易發(fa)(fa)生(sheng)(sheng)。
盡管AC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)和DC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)都屬(shu)于雜散電(dian)(dian)流(liu)(liu)(liu)干擾(rao)腐(fu)(fu)蝕(shi)(shi)(shi)(shi),然而由于交(jiao)流(liu)(liu)(liu)電(dian)(dian)流(liu)(liu)(liu)密(mi)度的(de)(de)(de)大小(xiao)和方(fang)向(xiang)在(zai)(zai)極短的(de)(de)(de)時間間隔內不(bu)(bu)斷(duan)發(fa)生變化使得AC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)與DC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)有著明(ming)顯不(bu)(bu)同[22,23]:(1) DC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)規律(lv)服從Faraday定律(lv),可以計算它的(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)量(liang)。但(dan)(dan)由于AC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)在(zai)(zai)交(jiao)流(liu)(liu)(liu)電(dian)(dian)場(chang)的(de)(de)(de)作用下金(jin)(jin)屬(shu)的(de)(de)(de)電(dian)(dian)化學過(guo)程(cheng)與上述不(bu)(bu)同,交(jiao)流(liu)(liu)(liu)的(de)(de)(de)電(dian)(dian)量(liang)與金(jin)(jin)屬(shu)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)量(liang)間不(bu)(bu)是(shi)單一(yi)的(de)(de)(de)對應(ying)關系。(2) AC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)效率遠低于DC腐(fu)(fu)蝕(shi)(shi)(shi)(shi),約只有DC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)2%,但(dan)(dan)這并(bing)不(bu)(bu)能說(shuo)(shuo)明(ming)交(jiao)流(liu)(liu)(liu)電(dian)(dian)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)危(wei)害性(xing)更小(xiao)。一(yi)些實驗研究結果表明(ming)[24-27],由于交(jiao)流(liu)(liu)(liu)電(dian)(dian)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)多發(fa)生小(xiao)孔腐(fu)(fu)蝕(shi)(shi)(shi)(shi)而直(zhi)流(liu)(liu)(liu)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)多發(fa)生均勻腐(fu)(fu)蝕(shi)(shi)(shi)(shi),此時若簡單通過(guo)例如失(shi)重(zhong)法來判斷(duan)是(shi)非常不(bu)(bu)科學的(de)(de)(de)。(3) AC腐(fu)(fu)蝕(shi)(shi)(shi)(shi)不(bu)(bu)但(dan)(dan)會遭(zao)受交(jiao)流(liu)(liu)(liu)干擾(rao)強度的(de)(de)(de)影(ying)響(xiang),波形和頻率 (f ) 對金(jin)(jin)屬(shu)的(de)(de)(de)交(jiao)流(liu)(liu)(liu)電(dian)(dian)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)行為也存在(zai)(zai)影(ying)響(xiang),而對于直(zhi)流(liu)(liu)(liu)干擾(rao)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)來說(shuo)(shuo),一(yi)般情況下只和干擾(rao)強度如電(dian)(dian)壓、電(dian)(dian)流(liu)(liu)(liu)的(de)(de)(de)大小(xiao)相關。
2 AC腐蝕機理的發展
AC腐(fu)蝕機理的(de)研究在20世紀70,80年代得到了(le)較多(duo)的(de)發(fa)展。國內外(wai)學者對交(jiao)流電(dian)腐(fu)蝕機理還存(cun)在爭議,截至目前交(jiao)流電(dian)誘(you)使金屬發(fa)生(sheng)腐(fu)蝕的(de)原因尚未十分(fen)明確,主要可劃分(fen)為以下幾種。
2.1 Faraday整流效(xiao)應(ying)
李明等(deng)[24]研究結(jie)論與(yu)McCollum等(deng)[28]提出(chu)的(de)(de)“整(zheng)(zheng)流(liu)(liu)(liu)(liu)說(shuo)”相符(fu),認(ren)為(wei):腐(fu)(fu)蝕(shi)(shi)反應不可逆地導(dao)致了(le)交流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)腐(fu)(fu)蝕(shi)(shi)的(de)(de)產(chan)(chan)生(sheng),正半周期金(jin)屬(shu)腐(fu)(fu)蝕(shi)(shi)的(de)(de)增加量大于(yu)負(fu)半周期的(de)(de)減(jian)小量,陽極(ji)(ji)(ji)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)不等(deng)于(yu)陰極(ji)(ji)(ji)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu),產(chan)(chan)生(sheng)凈Faraday電(dian)(dian)(dian)流(liu)(liu)(liu)(liu),進(jin)而促進(jin)金(jin)屬(shu)腐(fu)(fu)蝕(shi)(shi)。Kulman[9]提出(chu)了(le)在AC作(zuo)用下的(de)(de)電(dian)(dian)(dian)解法整(zheng)(zheng)流(liu)(liu)(liu)(liu)機理(li),整(zheng)(zheng)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)的(de)(de)流(liu)(liu)(liu)(liu)動(dong)(dong)方(fang)向(xiang)(xiang)為(wei)金(jin)屬(shu)到電(dian)(dian)(dian)解質。翁永基等(deng)[15]的(de)(de)研究結(jie)果支持了(le)根據(ju)Faraday整(zheng)(zheng)流(liu)(liu)(liu)(liu)效應和(he)活化控制下的(de)(de)動(dong)(dong)力學(xue)極(ji)(ji)(ji)化理(li)論所得出(chu)的(de)(de)結(jie)論,即腐(fu)(fu)蝕(shi)(shi)電(dian)(dian)(dian)位(wei)會因為(wei)存在AC的(de)(de)干擾而產(chan)(chan)生(sheng)偏(pian)移,陽極(ji)(ji)(ji)和(he)陰極(ji)(ji)(ji)Tafel斜率(lv)之比為(wei)r,當r>1時腐(fu)(fu)蝕(shi)(shi)電(dian)(dian)(dian)位(wei)會正向(xiang)(xiang)偏(pian)移,r<1時則負(fu)向(xiang)(xiang)偏(pian)移。需要(yao)說(shuo)明的(de)(de)是,這些模(mo)型(xing)并沒有考慮(lv)環境介(jie)質電(dian)(dian)(dian)阻等(deng)因素。但這個理(li)論和(he)模(mo)型(xing)的(de)(de)提出(chu)具有進(jin)步(bu)意義。
也有研究(jiu)人員不(bu)贊同“整流(liu)說”。Williams[23]、Yunovich等[29]與Bruckner[30]認為交流(liu)腐蝕的(de)產生完全是由于金屬(shu)(shu)離子在(zai)正半(ban)周期擴散造成的(de),金屬(shu)(shu)電極的(de)腐蝕膜上不(bu)存(cun)在(zai)整流(liu)的(de)跡(ji)象,整流(liu)效應(ying)機(ji)理解(jie)釋圖見圖2。由此可見,Faraday整流(liu)效應(ying)機(ji)理并不(bu)能使交流(liu)電腐蝕得到很好的(de)解(jie)釋,但對揭(jie)示(shi)AC腐蝕機(ji)理存(cun)在(zai)著積極作(zuo)用。
圖2 整流效應機理解(jie)釋(shi)圖[29]
2.2 陽(yang)極反應的不可(ke)逆性
Goidanich等(deng)[31]通過(guo)(guo)(guo)對(dui)交流(liu)(liu)(liu)電(dian)(dian)對(dui)金(jin)屬(shu)(shu)電(dian)(dian)化(hua)學(xue)(xue)反應動力學(xue)(xue)的(de)(de)(de)(de)(de)(de)(de)研究結果表(biao)明(ming),金(jin)屬(shu)(shu)與介質界面(mian)間(jian)的(de)(de)(de)(de)(de)(de)(de)電(dian)(dian)化(hua)學(xue)(xue)過(guo)(guo)(guo)程(cheng)不(bu)(bu)(bu)(bu)是(shi)(shi)完全(quan)可(ke)逆(ni)(ni)時,Faraday整流(liu)(liu)(liu)效應不(bu)(bu)(bu)(bu)能用來(lai)描(miao)述金(jin)屬(shu)(shu)被交流(liu)(liu)(liu)電(dian)(dian)腐蝕所造成的(de)(de)(de)(de)(de)(de)(de)影響,如(ru)圖3所示。對(dui)于(yu)不(bu)(bu)(bu)(bu)受干(gan)(gan)擾的(de)(de)(de)(de)(de)(de)(de)試(shi)樣,通過(guo)(guo)(guo)失重和(he)(he)(he)Tafel圖推(tui)(tui)導(dao)得到的(de)(de)(de)(de)(de)(de)(de)腐蝕速(su)率(lv)有很好的(de)(de)(de)(de)(de)(de)(de)一(yi)致性(xing)。在AC存在的(de)(de)(de)(de)(de)(de)(de)情況下,Tafel推(tui)(tui)導(dao)得到的(de)(de)(de)(de)(de)(de)(de)值(zhi)明(ming)顯低于(yu)失重得到的(de)(de)(de)(de)(de)(de)(de)。因(yin)此,在存在交流(liu)(liu)(liu)干(gan)(gan)擾的(de)(de)(de)(de)(de)(de)(de)情況下,Tafel推(tui)(tui)導(dao)似乎不(bu)(bu)(bu)(bu)適用于(yu)Icorr的(de)(de)(de)(de)(de)(de)(de)計算。這也(ye)(ye)意味(wei)著(zhu)交流(liu)(liu)(liu)電(dian)(dian)腐蝕不(bu)(bu)(bu)(bu)能簡(jian)單地(di)用觀(guan)察到的(de)(de)(de)(de)(de)(de)(de)動力學(xue)(xue)參數的(de)(de)(de)(de)(de)(de)(de)變化(hua)來(lai)解(jie)釋。交流(liu)(liu)(liu)干(gan)(gan)擾過(guo)(guo)(guo)程(cheng)中腐蝕速(su)率(lv)提高的(de)(de)(de)(de)(de)(de)(de)一(yi)個可(ke)能原因(yin)是(shi)(shi),正半和(he)(he)(he)負半周期(qi)的(de)(de)(de)(de)(de)(de)(de)電(dian)(dian)化(hua)學(xue)(xue)過(guo)(guo)(guo)程(cheng)并不(bu)(bu)(bu)(bu)完全(quan)可(ke)逆(ni)(ni),所以造成金(jin)屬(shu)(shu)溶(rong)(rong)液(ye)界面(mian)雙電(dian)(dian)層結構變化(hua),金(jin)屬(shu)(shu)表(biao)面(mian)的(de)(de)(de)(de)(de)(de)(de)化(hua)學(xue)(xue)成分也(ye)(ye)隨(sui)之改變。與之不(bu)(bu)(bu)(bu)同,曹楚南(nan)[32]認為AC作用下金(jin)屬(shu)(shu)陽極(ji)溶(rong)(rong)解(jie)時陽極(ji)溶(rong)(rong)解(jie)反應的(de)(de)(de)(de)(de)(de)(de)動力學(xue)(xue)機制、Tafel斜率(lv)和(he)(he)(he)交換(huan)電(dian)(dian)流(liu)(liu)(liu)密度(du)都保持不(bu)(bu)(bu)(bu)變。但是(shi)(shi),因(yin)為關于(yu)陽極(ji)溶(rong)(rong)解(jie)的(de)(de)(de)(de)(de)(de)(de)E-I曲線不(bu)(bu)(bu)(bu)是(shi)(shi)線性(xing)的(de)(de)(de)(de)(de)(de)(de),AC造成的(de)(de)(de)(de)(de)(de)(de)最終現象是(shi)(shi)導(dao)致金(jin)屬(shu)(shu)陽極(ji)溶(rong)(rong)解(jie)速(su)率(lv)增大。
圖3 由失(shi)重實驗得到的腐(fu)蝕速率和(he)通過對(dui)極化曲線的線性(xing)回歸獲得的值(zhi)進行比較[31]
2.3 陽極反應(ying)的去(qu)極化(hua)作用
Jones[33]最先(xian)提(ti)出了(le)陽極反應去極化作用的(de)(de)(de)腐蝕機(ji)理(li),簡單(dan)來說就(jiu)是由于Tafel斜率的(de)(de)(de)不同導致了(le)局部腐蝕,見(jian)圖4。實驗(yan)結果表(biao)明,AC會造(zao)成金屬(shu)的(de)(de)(de)陽極溶(rong)解反應的(de)(de)(de)動力學機(ji)構產(chan)生(sheng)影響。李巖(yan)等(deng)[34]和王霞[35]等(deng)的(de)(de)(de)研究也證明了(le)這(zhe)一觀點。但是,交流電產(chan)生(sheng)這(zhe)種去極化現象的(de)(de)(de)原(yuan)因(yin)并(bing)沒有詳細的(de)(de)(de)解釋(shi),此機(ji)理(li)并(bing)不完善,需要后續的(de)(de)(de)改進。
圖(tu)4 陽(yang)極(ji)反應(ying)的去極(ji)化作用示意圖(tu)[33]
2.4 堿化機理
隨(sui)著陰(yin)(yin)極(ji)(ji)保(bao)護下管(guan)道(dao)交(jiao)(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)腐蝕問題的(de)(de)(de)增多(duo),人們(men)對陰(yin)(yin)極(ji)(ji)保(bao)護下管(guan)道(dao)的(de)(de)(de)腐蝕機理(li)開展研究。Nielsen等[36,37]通過實(shi)驗和(he)(he)失效案(an)例分析認(ren)(ren)為(wei),埋地(di)管(guan)道(dao)有陰(yin)(yin)極(ji)(ji)保(bao)護時(shi),因為(wei)在管(guan)道(dao)表(biao)面(mian)缺(que)(que)陷(xian)處發生(sheng)陰(yin)(yin)極(ji)(ji)極(ji)(ji)化會產生(sheng)OH-,使缺(que)(que)陷(xian)處的(de)(de)(de)pH升高進而(er)造成附近土壤的(de)(de)(de)堿性化,并提出了“堿化機理(li)”。該機理(li)認(ren)(ren)為(wei),對于(yu)(yu)陰(yin)(yin)極(ji)(ji)下管(guan)道(dao)的(de)(de)(de)AC腐蝕是(shi)由于(yu)(yu)交(jiao)(jiao)(jiao)流(liu)(liu)干(gan)擾引起的(de)(de)(de)電(dian)(dian)(dian)流(liu)(liu)振蕩(dang)和(he)(he)管(guan)道(dao)外防腐層缺(que)(que)陷(xian)處較(jiao)高的(de)(de)(de)pH共同引起的(de)(de)(de)。在交(jiao)(jiao)(jiao)流(liu)(liu)干(gan)擾的(de)(de)(de)周期波動(dong)(dong)下,管(guan)道(dao)腐蝕電(dian)(dian)(dian)位會隨(sui)著波動(dong)(dong)進入Pourbaix圖(tu)中的(de)(de)(de)堿性腐蝕區(qu)(qu),pH高時(shi),金(jin)屬表(biao)面(mian)的(de)(de)(de)氧化膜(mo)會被(bei)交(jiao)(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)壓(ya)的(de)(de)(de)循環振蕩(dang)破壞然后發生(sheng)腐蝕。Panossian等[38]研究了不同pH下金(jin)屬的(de)(de)(de)AC腐蝕行(xing)為(wei),模(mo)型是(shi)根據熱力學預估(gu)交(jiao)(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)腐蝕發生(sheng)的(de)(de)(de)原因,研究表(biao)明交(jiao)(jiao)(jiao)流(liu)(liu)電(dian)(dian)(dian)腐蝕是(shi)由于(yu)(yu)在活化區(qu)(qu)和(he)(he)免蝕區(qu)(qu)或(huo)鈍化區(qu)(qu)和(he)(he)免蝕區(qu)(qu)間的(de)(de)(de)反(fan)復交(jiao)(jiao)(jiao)替變化,但是(shi)具體動(dong)(dong)力參數(shu)的(de)(de)(de)影(ying)響規律卻沒(mei)有明確的(de)(de)(de)模(mo)型可以解釋(shi)。
2.5 自催化機制
Nielsen在(zai)(zai)“堿化機理”之上(shang),進一(yi)步(bu)提(ti)出了(le)“自催化機制”[36,37,39]。這個機制的(de)(de)(de)前提(ti)條(tiao)件(jian)是:管(guan)(guan)道(dao)(dao)陰極(ji)(ji)(ji)(ji)保(bao)護恒電(dian)(dian)(dian)位(wei)儀(yi)電(dian)(dian)(dian)位(wei)控制點附近(jin)存(cun)在(zai)(zai)防(fang)腐(fu)(fu)層(ceng)(ceng)缺(que)陷(xian)(xian)(xian),且(qie)在(zai)(zai)該位(wei)置存(cun)在(zai)(zai)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)干擾。認為施加了(le)陰極(ji)(ji)(ji)(ji)保(bao)護的(de)(de)(de)埋地管(guan)(guan)道(dao)(dao)發生交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)電(dian)(dian)(dian)腐(fu)(fu)蝕一(yi)般需(xu)要3個必(bi)須具備的(de)(de)(de)條(tiao)件(jian):交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)感(gan)應電(dian)(dian)(dian)壓、管(guan)(guan)道(dao)(dao)防(fang)腐(fu)(fu)層(ceng)(ceng)存(cun)在(zai)(zai)微小的(de)(de)(de)缺(que)陷(xian)(xian)(xian)和過(guo)(guo)負的(de)(de)(de)陰極(ji)(ji)(ji)(ji)保(bao)護極(ji)(ji)(ji)(ji)化電(dian)(dian)(dian)位(wei)。因為存(cun)在(zai)(zai)著交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)感(gan)應電(dian)(dian)(dian)壓,交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)會流(liu)(liu)(liu)(liu)(liu)(liu)過(guo)(guo)管(guan)(guan)道(dao)(dao)防(fang)腐(fu)(fu)層(ceng)(ceng)的(de)(de)(de)破損處,造(zao)成(cheng)管(guan)(guan)道(dao)(dao)的(de)(de)(de)去極(ji)(ji)(ji)(ji)化。此時,為了(le)保(bao)持(chi)管(guan)(guan)道(dao)(dao)電(dian)(dian)(dian)位(wei)的(de)(de)(de)穩(wen)定(ding)需(xu)增加陰極(ji)(ji)(ji)(ji)保(bao)護電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)。但(dan)是,增大陰保(bao)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)會有管(guan)(guan)道(dao)(dao)缺(que)陷(xian)(xian)(xian)處局部土壤(rang)過(guo)(guo)堿化的(de)(de)(de)后果,使得管(guan)(guan)道(dao)(dao)缺(que)陷(xian)(xian)(xian)處的(de)(de)(de)擴散電(dian)(dian)(dian)阻Rs變(bian)小。由Ohm定(ding)律可知,一(yi)定(ding)的(de)(de)(de)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)干擾電(dian)(dian)(dian)壓下,管(guan)(guan)道(dao)(dao)缺(que)陷(xian)(xian)(xian)的(de)(de)(de)Rs變(bian)小會造(zao)成(cheng)缺(que)陷(xian)(xian)(xian)處的(de)(de)(de)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)密度(du)增大,而交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)密度(du)的(de)(de)(de)增大又會進一(yi)步(bu)增強去極(ji)(ji)(ji)(ji)化作用,所以又需(xu)再(zai)加大管(guan)(guan)道(dao)(dao)的(de)(de)(de)陰極(ji)(ji)(ji)(ji)保(bao)護電(dian)(dian)(dian)流(liu)(liu)(liu)(liu)(liu)(liu)。這又會使防(fang)腐(fu)(fu)層(ceng)(ceng)缺(que)陷(xian)(xian)(xian)的(de)(de)(de)Rs減小,陷(xian)(xian)(xian)入(ru)不(bu)斷惡性循環,交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)(liu)(liu)腐(fu)(fu)蝕只會越來越嚴重,最(zui)終(zhong)造(zao)成(cheng)管(guan)(guan)道(dao)(dao)的(de)(de)(de)穿(chuan)孔。
2.6 腐蝕產物膜層(ceng)演變
交(jiao)流電(dian)(dian)會(hui)引(yin)(yin)起雙層(ceng)(ceng)(ceng)化(hua)(hua)(hua)學成(cheng)分的(de)(de)(de)(de)變化(hua)(hua)(hua),從而引(yin)(yin)起平(ping)衡電(dian)(dian)位的(de)(de)(de)(de)變化(hua)(hua)(hua)和(he)(he)表(biao)(biao)面腐(fu)(fu)蝕(shi)產物(wu)膜的(de)(de)(de)(de)生長(chang)[25,40]。如(ru)圖5所(suo)示(shi),在(zai)(zai)交(jiao)流干擾的(de)(de)(de)(de)正(zheng)半(ban)周(zhou)期(qi)中,陽(yang)極極化(hua)(hua)(hua)結(jie)果(guo)是(shi)金(jin)(jin)屬被(bei)溶(rong)解生成(cheng)Fe2+,Fe2+和(he)(he)溶(rong)液中的(de)(de)(de)(de)OH-在(zai)(zai)電(dian)(dian)極表(biao)(biao)面結(jie)合形成(cheng)多(duo)孔且(qie)疏松的(de)(de)(de)(de)Fe(OH)2,被(bei)氧(yang)化(hua)(hua)(hua)為Fe3O4。在(zai)(zai)交(jiao)流干擾的(de)(de)(de)(de)負半(ban)周(zhou)期(qi)中,陰極極化(hua)(hua)(hua)的(de)(de)(de)(de)結(jie)果(guo)是(shi)腐(fu)(fu)蝕(shi)產物(wu)的(de)(de)(de)(de)還(huan)原。Fe3O4被(bei)還(huan)原為Fe(OH)2 (圖5中d)。隨著(zhu)下一(yi)個(ge)周(zhou)期(qi)的(de)(de)(de)(de)開(kai)始(shi),一(yi)部分Fe(OH)2在(zai)(zai)下一(yi)次陽(yang)極極化(hua)(hua)(hua)過程中被(bei)氧(yang)化(hua)(hua)(hua)為Fe3O4,另一(yi)部分則轉(zhuan)變為Fe(OH)3 (圖5中e)。因此,腐(fu)(fu)蝕(shi)產物(wu)的(de)(de)(de)(de)內層(ceng)(ceng)(ceng)為黑色的(de)(de)(de)(de)Fe3O4,腐(fu)(fu)蝕(shi)產物(wu)的(de)(de)(de)(de)外層(ceng)(ceng)(ceng)為Fe(OH)3 (圖5中g和(he)(he)h),隨著(zhu)腐(fu)(fu)蝕(shi)的(de)(de)(de)(de)進(jin)一(yi)步(bu)發(fa)生,Fe(OH)3轉(zhuan)變為Fe2O3和(he)(he)FeOOH。由此可知(zhi),腐(fu)(fu)蝕(shi)產物(wu)層(ceng)(ceng)(ceng)的(de)(de)(de)(de)外層(ceng)(ceng)(ceng)是(shi)由Fe(OH)2,Fe(OH)3和(he)(he)FeOOH組成(cheng)的(de)(de)(de)(de)沒有阻(zu)礙(ai)金(jin)(jin)屬腐(fu)(fu)蝕(shi)作用的(de)(de)(de)(de)多(duo)孔介質,腐(fu)(fu)蝕(shi)產物(wu)層(ceng)(ceng)(ceng)底(di)層(ceng)(ceng)(ceng)緊(jin)挨(ai)金(jin)(jin)屬基(ji)體(ti)的(de)(de)(de)(de)是(shi)致密(mi)的(de)(de)(de)(de)、有利(li)于保護管線鋼(gang)基(ji)體(ti)的(de)(de)(de)(de)Fe3O4[38]。
圖5 腐(fu)蝕產物膜層演變示意圖[25]
綜上(shang)所述,現有的各種AC腐(fu)蝕機理(li)的模型都有它(ta)的局(ju)限性(xing)和特(te)殊性(xing)。截至目前(qian),AC腐(fu)蝕機理(li)尚未統一(yi),有待(dai)深入研究(jiu)。
3 AC腐蝕的(de)影響因(yin)素
3.1 交流電(dian)流密度
交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)是(shi)影(ying)響金(jin)屬(shu)腐(fu)蝕(shi)(shi)行為(wei)的(de)主要因素之一(yi)。一(yi)些研(yan)究(jiu)人員[41,42]認(ren)為(wei),金(jin)屬(shu)的(de)腐(fu)蝕(shi)(shi)速(su)(su)率(lv)隨(sui)著交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)的(de)增大(da)而升高(gao)(見圖6)。Kim等[43]的(de)研(yan)究(jiu)表(biao)明(ming),施加(jia)(jia)(jia)(jia)低交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)20 A/m2,碳鋼的(de)腐(fu)蝕(shi)(shi)速(su)(su)率(lv)比(bi)(bi)較(jiao)小,隨(sui)著交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)的(de)增加(jia)(jia)(jia)(jia),管道的(de)腐(fu)蝕(shi)(shi)速(su)(su)率(lv)甚(shen)至可以(yi)高(gao)達1.3 mm/a。Goidanich等[40]的(de)實驗表(biao)明(ming),與無交(jiao)流(liu)(liu)(liu)電干擾時相(xiang)比(bi)(bi),當交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)為(wei)10 A/m2時,碳鋼的(de)腐(fu)蝕(shi)(shi)速(su)(su)率(lv)增加(jia)(jia)(jia)(jia)了一(yi)倍;當交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)大(da)于30 A/m2時,腐(fu)蝕(shi)(shi)速(su)(su)率(lv)呈指數增長。Wu等[44]認(ren)為(wei)由于交(jiao)流(liu)(liu)(liu)電流(liu)(liu)(liu)密度(du)(du)增加(jia)(jia)(jia)(jia)導致了氧還原加(jia)(jia)(jia)(jia)快,提高(gao)了極限(xian)擴散(san)電流(liu)(liu)(liu)密度(du)(du),析氫反應容易被(bei)激發,進(jin)而加(jia)(jia)(jia)(jia)速(su)(su)金(jin)屬(shu)的(de)腐(fu)蝕(shi)(shi)。Reyes等[45]的(de)研(yan)究(jiu)表(biao)明(ming),隨(sui)著交(jiao)流(liu)(liu)(liu)干擾的(de)不斷加(jia)(jia)(jia)(jia)強,由于交(jiao)流(liu)(liu)(liu)電自身不斷增強的(de)攪拌和加(jia)(jia)(jia)(jia)熱作用(yong),腐(fu)蝕(shi)(shi)速(su)(su)率(lv)增加(jia)(jia)(jia)(jia)。
圖6 交流電流密(mi)度與(yu)腐蝕速率的關系[42]
除此(ci)之(zhi)外,交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度的(de)變化(hua)(hua)還(huan)會影響金(jin)屬的(de)腐(fu)蝕(shi)(shi)行為(wei),如均勻腐(fu)蝕(shi)(shi)、點蝕(shi)(shi)、應(ying)力腐(fu)蝕(shi)(shi)。Fu等(deng)(deng)(deng)[26]和李明(ming)等(deng)(deng)(deng)[24]研(yan)究(jiu)表(biao)明(ming),在(zai)(zai)交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度較低時(shi),發生(sheng)的(de)是以均勻腐(fu)蝕(shi)(shi)為(wei)主的(de)腐(fu)蝕(shi)(shi)形(xing)態;在(zai)(zai)交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度較高(gao)時(shi),點蝕(shi)(shi)反(fan)而普遍發生(sheng)。碳(tan)鋼(gang)在(zai)(zai)低電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度 (100 A/m2) 作(zuo)用下發生(sheng)的(de)是均勻腐(fu)蝕(shi)(shi),當在(zai)(zai)高(gao)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度 (如500 A/m2) 作(zuo)用下管線鋼(gang)發生(sheng)嚴重(zhong)的(de)局部腐(fu)蝕(shi)(shi)。Guo等(deng)(deng)(deng)[25]的(de)研(yan)究(jiu)也(ye)證明(ming)了(le)這一觀點。Kuang等(deng)(deng)(deng)[27]研(yan)究(jiu)證明(ming)在(zai)(zai)堿(jian)性環(huan)境中(zhong),交(jiao)(jiao)流(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)下,存在(zai)(zai)著臨(lin)界(jie)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度0.002 A/cm2,交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度較小時(shi),鈍化(hua)(hua)膜可以阻擋腐(fu)蝕(shi)(shi);交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度較大(da)時(shi),由于(yu)陰極極化(hua)(hua)造成鈍化(hua)(hua)膜被破壞,加速了(le)金(jin)屬腐(fu)蝕(shi)(shi)尤其是點蝕(shi)(shi)的(de)產生(sheng)。楊燕(yan)[46]的(de)研(yan)究(jiu)結果表(biao)明(ming),同等(deng)(deng)(deng)條(tiao)件下交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度越大(da),蝕(shi)(shi)坑越深;交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度小于(yu)臨(lin)界(jie)值(zhi)時(shi),隨著電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度增加,腐(fu)蝕(shi)(shi)越劇烈,如圖(tu)7和8所示。Liu等(deng)(deng)(deng)[47]和Wan等(deng)(deng)(deng)[48]研(yan)究(jiu)表(biao)明(ming),在(zai)(zai)交(jiao)(jiao)流(liu)(liu)(liu)(liu)干(gan)擾(rao)(rao)(rao)下,隨著交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度的(de)不斷上(shang)升,應(ying)力腐(fu)蝕(shi)(shi)敏感性也(ye)不斷上(shang)升。交(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)干(gan)擾(rao)(rao)(rao)的(de)存在(zai)(zai)使(shi)得吸氧和析氫反(fan)應(ying)加速發生(sheng),腐(fu)蝕(shi)(shi)速率也(ye)隨之(zhi)增加。
圖7 不同交(jiao)流電流密(mi)度干擾24 h后(hou)X80鋼的腐蝕形貌[35]
圖8 不同(tong)交流(liu)電流(liu)密度干(gan)擾10 d后X70鋼試(shi)樣腐(fu)蝕形貌[46]
另外,交(jiao)流(liu)(liu)電(dian)流(liu)(liu)密度(du)(du)大小對于金屬的(de)鈍(dun)(dun)性和化(hua)學反(fan)應的(de)控(kong)(kong)制(zhi)步驟也存在著影響。Chin等[49]研究表明,在AC的(de)作(zuo)用下(xia)堿(jian)性環境中低碳鋼的(de)陽極(ji)極(ji)化(hua)曲線的(de)形狀發(fa)生(sheng)了變(bian)化(hua),隨著交(jiao)流(liu)(liu)電(dian)流(liu)(liu)密度(du)(du)的(de)增(zeng)加(jia),致(zhi)鈍(dun)(dun)電(dian)流(liu)(liu)的(de)密度(du)(du)不斷增(zeng)加(jia),致(zhi)鈍(dun)(dun)電(dian)位(wei)負(fu)移。和宏偉等[50]研究表明,交(jiao)流(liu)(liu)干擾越大,對氧擴散的(de)影響作(zuo)用越明顯,但增(zeng)加(jia)到一(yi)定程(cheng)度(du)(du)后陽極(ji)溶(rong)解(jie)會替代氧擴散步驟變(bian)為(wei)新(xin)的(de)控(kong)(kong)制(zhi)步驟。由此可見,一(yi)般(ban)來(lai)說,交(jiao)流(liu)(liu)電(dian)流(liu)(liu)密度(du)(du)愈大,腐蝕(shi)傾向(xiang)愈加(jia)嚴(yan)重(zhong),并且容易發(fa)生(sheng)嚴(yan)重(zhong)點蝕(shi)且應力敏(min)感(gan)性增(zeng)加(jia)。
3.2 交流電頻率
交(jiao)(jiao)流(liu)(liu)電(dian)(dian)是(shi)周期(qi)變(bian)化的(de),這也就影響(xiang)著(zhu)電(dian)(dian)極(ji)反應的(de)速(su)(su)(su)率(lv)(lv)(lv)(lv)(lv)。因此(ci),交(jiao)(jiao)流(liu)(liu)電(dian)(dian)頻(pin)率(lv)(lv)(lv)(lv)(lv)對(dui)金(jin)屬腐(fu)(fu)(fu)蝕(shi)形(xing)態、蝕(shi)坑形(xing)態大(da)(da)小和密度等(deng)(deng)都(dou)有(you)著(zhu)重要的(de)影響(xiang)。目前,對(dui)于(yu)交(jiao)(jiao)流(liu)(liu)電(dian)(dian)頻(pin)率(lv)(lv)(lv)(lv)(lv)對(dui)腐(fu)(fu)(fu)蝕(shi)的(de)影響(xiang)還沒有(you)統(tong)一(yi)的(de)認識。常見的(de)AC腐(fu)(fu)(fu)蝕(shi)涉及的(de)頻(pin)率(lv)(lv)(lv)(lv)(lv)范圍較小,通常腐(fu)(fu)(fu)蝕(shi)發生在(zai)工頻(pin) (50~60 Hz) 下(xia)(xia),在(zai)此(ci)范圍內金(jin)屬的(de)腐(fu)(fu)(fu)蝕(shi)速(su)(su)(su)率(lv)(lv)(lv)(lv)(lv)隨著(zhu)頻(pin)率(lv)(lv)(lv)(lv)(lv)的(de)增(zeng)長(chang)而(er)下(xia)(xia)降。但也有(you)研(yan)究(jiu)(jiu)人員提出(chu)了(le)不(bu)同的(de)意(yi)見。Bertocci[51]認為,在(zai)電(dian)(dian)路中(zhong)只有(you)少數交(jiao)(jiao)流(liu)(liu)電(dian)(dian)流(liu)(liu)發生了(le)電(dian)(dian)荷轉移,非Faraday交(jiao)(jiao)流(liu)(liu)電(dian)(dian)流(liu)(liu)因頻(pin)率(lv)(lv)(lv)(lv)(lv)的(de)不(bu)斷(duan)升(sheng)高使(shi)得通過雙電(dian)(dian)層的(de)次(ci)數不(bu)斷(duan)增(zeng)多,導致(zhi)腐(fu)(fu)(fu)蝕(shi)速(su)(su)(su)率(lv)(lv)(lv)(lv)(lv)很小,而(er)且也會影響(xiang)金(jin)屬的(de)鈍性[52]。Liu等(deng)(deng)[47]研(yan)究(jiu)(jiu)結果表(biao)明,在(zai)30 Hz時反應速(su)(su)(su)率(lv)(lv)(lv)(lv)(lv)最大(da)(da),因為頻(pin)率(lv)(lv)(lv)(lv)(lv)的(de)改變(bian)對(dui)于(yu)產(chan)生的(de)反應產(chan)物有(you)周期(qi)性的(de)吸附和擴散(san)的(de)影響(xiang)。Radeka等(deng)(deng)[53]研(yan)究(jiu)(jiu)認為,在(zai)AC的(de)作用(yong)下(xia)(xia)船舶用(yong)鋼的(de)腐(fu)(fu)(fu)蝕(shi)臨界頻(pin)率(lv)(lv)(lv)(lv)(lv)為2000 Hz。但Dyer等(deng)(deng)[54]研(yan)究(jiu)(jiu)鋁(lv)箔的(de)交(jiao)(jiao)流(liu)(liu)腐(fu)(fu)(fu)蝕(shi)表(biao)明,當頻(pin)率(lv)(lv)(lv)(lv)(lv)小于(yu)臨界值時,頻(pin)率(lv)(lv)(lv)(lv)(lv)越(yue)大(da)(da),蝕(shi)坑越(yue)小越(yue)密;當頻(pin)率(lv)(lv)(lv)(lv)(lv)大(da)(da)于(yu)臨界值時,有(you)較大(da)(da)腐(fu)(fu)(fu)蝕(shi)坑產(chan)生,導致(zhi)金(jin)屬變(bian)薄。
3.3 交(jiao)流電(dian)波(bo)形
交流(liu)電波(bo)(bo)(bo)(bo)形(xing)(xing)(xing)也是金屬腐(fu)蝕(shi)(shi)行(xing)為(wei)的(de)(de)(de)(de)(de)重(zhong)要影(ying)響(xiang)因素(su)之一(yi)。目前,關于(yu)交流(liu)電波(bo)(bo)(bo)(bo)形(xing)(xing)(xing)對腐(fu)蝕(shi)(shi)影(ying)響(xiang)的(de)(de)(de)(de)(de)研(yan)究較少。Chin等[49]分別使(shi)用三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)、正(zheng)弦(xian)波(bo)(bo)(bo)(bo)和方(fang)波(bo)(bo)(bo)(bo)的(de)(de)(de)(de)(de)交流(liu)電 (頻(pin)率均為(wei)60 Hz) 進行(xing)Fe的(de)(de)(de)(de)(de)腐(fu)蝕(shi)(shi)實驗。相(xiang)同條件下,在降低金屬鈍性和腐(fu)蝕(shi)(shi)嚴重(zhong)性的(de)(de)(de)(de)(de)方(fang)面,從大(da)到小的(de)(de)(de)(de)(de)順序為(wei):三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)>正(zheng)弦(xian)波(bo)(bo)(bo)(bo)>方(fang)波(bo)(bo)(bo)(bo);而(er)應力(li)敏感性從大(da)到小的(de)(de)(de)(de)(de)順序為(wei):正(zheng)弦(xian)波(bo)(bo)(bo)(bo)>方(fang)波(bo)(bo)(bo)(bo)>三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)。郭(guo)敏等[55]研(yan)究交流(liu)電波(bo)(bo)(bo)(bo)形(xing)(xing)(xing)對低壓腐(fu)蝕(shi)(shi)鋁(lv)箔微觀形(xing)(xing)(xing)貌(mao)的(de)(de)(de)(de)(de)影(ying)響(xiang)結果顯(xian)示(shi),正(zheng)弦(xian)波(bo)(bo)(bo)(bo)和三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)的(de)(de)(de)(de)(de)孔徑在大(da)小和間(jian)隔(ge)大(da)致相(xiang)同尺寸大(da)而(er)淺,方(fang)波(bo)(bo)(bo)(bo)所產生(sheng)的(de)(de)(de)(de)(de)孔徑小而(er)密;波(bo)(bo)(bo)(bo)形(xing)(xing)(xing)有(you)一(yi)段(duan)平(ping)穩不變期時(shi),易產生(sheng)并孔。對于(yu)電流(liu)處于(yu)不斷變化中(zhong)的(de)(de)(de)(de)(de)三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)與正(zheng)弦(xian)波(bo)(bo)(bo)(bo),并孔較少;三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)使(shi)蝕(shi)(shi)坑有(you)縱向(xiang)發展加(jia)深的(de)(de)(de)(de)(de)機會(hui),并且電流(liu)數值上始終不發生(sheng)變化,又能(neng)誘(you)導新點蝕(shi)(shi)的(de)(de)(de)(de)(de)萌生(sheng)。所以(yi)就(jiu)腐(fu)蝕(shi)(shi)速率而(er)言,三(san)(san)角(jiao)(jiao)波(bo)(bo)(bo)(bo)造成的(de)(de)(de)(de)(de)腐(fu)蝕(shi)(shi)最為(wei)嚴重(zhong)。
3.4 環境參數
一些(xie)學者的(de)研(yan)究[30,56]表明,金屬的(de)溫(wen)(wen)(wen)度隨(sui)交流(liu)電流(liu)密(mi)度的(de)增大而升高(gao)。大家普遍認為(wei),在(zai)交流(liu)電流(liu)密(mi)度約(yue)(yue)為(wei)0~835 A/m2時(shi),溫(wen)(wen)(wen)度可升至約(yue)(yue)40 ℃。但是在(zai)現場沒有明確證(zheng)據說明AC會引(yin)起溫(wen)(wen)(wen)度升高(gao)[57],僅僅是在(zai)室(shi)內實驗(yan)時(shi)得到此結論。
此外,溶液成(cheng)分也是(shi)重要的(de)影(ying)響因(yin)素。一(yi)些離子(zi)可(ke)以(yi)通過直接或間(jian)接參與(yu)電極(ji)反應,如CaCO3和NaHCO3,由(you)于CO32-與(yu)HCO3-參與(yu)電極(ji)反應而導致(zhi)(zhi)腐(fu)(fu)蝕(shi)加劇。流(liu)動的(de)介質腐(fu)(fu)蝕(shi)更嚴重[27,58,59]。Cl-可(ke)以(yi)使腐(fu)(fu)蝕(shi)的(de)程度加劇[26,60,61],且(qie)有研究[46,62]表明,當Cl-與(yu)SO42-共存時,SO42-具有緩蝕(shi)性(xing),可(ke)減弱Cl-對(dui)金(jin)屬(shu)點蝕(shi)的(de)影(ying)響,減少點蝕(shi)的(de)數量。另一(yi)些離子(zi)在金(jin)屬(shu)表面生成(cheng)致(zhi)(zhi)密(mi)的(de)腐(fu)(fu)蝕(shi)產物(wu)膜覆(fu)蓋在金(jin)屬(shu)表面,最終影(ying)響電極(ji)反應的(de)傳質過程[63,64]。
3.5 微生物
交(jiao)(jiao)流(liu)電能夠影(ying)響(xiang)(xiang)微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)新陳(chen)代(dai)謝(xie)(xie),進而影(ying)響(xiang)(xiang)金(jin)屬的(de)(de)(de)(de)微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)腐(fu)(fu)蝕(shi)(shi)行為(wei)。然而,相關研究鮮有(you)報道。卿永長等(deng)(deng)[65]利用電化學方法和(he)腐(fu)(fu)蝕(shi)(shi)形貌觀(guan)察法對Q235鋼在(zai)(zai)交(jiao)(jiao)流(liu)電和(he)微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)共同(tong)影(ying)響(xiang)(xiang)下的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)行為(wei)研究表明,在(zai)(zai)交(jiao)(jiao)流(liu)電流(liu)密度為(wei)50 A/m2,交(jiao)(jiao)流(liu)電頻率為(wei)50 Hz的(de)(de)(de)(de)條(tiao)件下,正弦波(bo)對硫酸鹽還原菌 (SRB) 的(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)長未造(zao)成較大的(de)(de)(de)(de)影(ying)響(xiang)(xiang) (圖9),交(jiao)(jiao)流(liu)電的(de)(de)(de)(de)存(cun)(cun)(cun)在(zai)(zai)使得SRB微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜的(de)(de)(de)(de)吸附性(xing)降(jiang)低并加速(su)了微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜的(de)(de)(de)(de)脫附。在(zai)(zai)實(shi)驗前期,活性(xing)的(de)(de)(de)(de)微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜抑制了金(jin)屬的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi),但在(zai)(zai)實(shi)驗后期微(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜失去(qu)活性(xing),發生(sheng)(sheng)(sheng)(sheng)(sheng)脫附,和(he)SRB的(de)(de)(de)(de)代(dai)謝(xie)(xie)產(chan)物(wu)(wu)(wu)一并加速(su)試樣的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)。在(zai)(zai)交(jiao)(jiao)流(liu)電的(de)(de)(de)(de)作用下,由(you)于整流(liu)效應(ying)的(de)(de)(de)(de)存(cun)(cun)(cun)在(zai)(zai),點蝕(shi)(shi)的(de)(de)(de)(de)自催化效應(ying)越發嚴重(zhong),局部腐(fu)(fu)蝕(shi)(shi)更加嚴重(zhong)。SRB的(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)理代(dai)謝(xie)(xie)過程使得Q235鋼的(de)(de)(de)(de)局部腐(fu)(fu)蝕(shi)(shi)敏感性(xing)增大。AC的(de)(de)(de)(de)存(cun)(cun)(cun)在(zai)(zai)造(zao)成試樣腐(fu)(fu)蝕(shi)(shi)產(chan)物(wu)(wu)(wu)疏(shu)松,點蝕(shi)(shi)等(deng)(deng)局部腐(fu)(fu)蝕(shi)(shi)傾向(xiang)加劇。此外,Qing等(deng)(deng)[66]的(de)(de)(de)(de)研究還表明,對X80鋼施加10 mA/cm2的(de)(de)(de)(de)AC電流(liu)抑制了懸浮在(zai)(zai)溶(rong)液中和(he)吸附在(zai)(zai)金(jin)屬基(ji)體上SRB的(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)長和(he)代(dai)謝(xie)(xie),間接地促進了金(jin)屬基(ji)體的(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi),認為(wei)SRB存(cun)(cun)(cun)在(zai)(zai)下交(jiao)(jiao)流(liu)電腐(fu)(fu)蝕(shi)(shi)的(de)(de)(de)(de)機理是由(you)Fe的(de)(de)(de)(de)活性(xing)溶(rong)解和(he)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)膜的(de)(de)(de)(de)降(jiang)解共同(tong)控制的(de)(de)(de)(de)。
圖9 實驗中細菌(jun)數量隨時(shi)間的變化[65]
4 AC腐蝕防護(hu)措(cuo)施的(de)實驗研究(jiu)
4.1 陰(yin)極保護
一般(ban)來說,管道(dao)(dao)(dao)上施加的(de)(de)(de)(de)最小陰極(ji)(ji)保(bao)護(hu)(hu)電位為-0.85 V (CSE)[67]。當管道(dao)(dao)(dao)承受交流(liu)干擾時,由于(yu)交流(liu)干擾也會對埋(mai)(mai)地(di)(di)管道(dao)(dao)(dao)的(de)(de)(de)(de)電位等(deng)造(zao)成嚴重的(de)(de)(de)(de)影(ying)響,所以也會影(ying)響陰極(ji)(ji)保(bao)護(hu)(hu)的(de)(de)(de)(de)參數,這可能(neng)就會造(zao)成陰極(ji)(ji)保(bao)護(hu)(hu)數值的(de)(de)(de)(de)變化。只有(you)在了(le)解AC對埋(mai)(mai)地(di)(di)管道(dao)(dao)(dao)陰極(ji)(ji)保(bao)護(hu)(hu)的(de)(de)(de)(de)影(ying)響規律和臨界值后才能(neng)更(geng)好(hao)地(di)(di)保(bao)護(hu)(hu)埋(mai)(mai)地(di)(di)管道(dao)(dao)(dao),真(zhen)正的(de)(de)(de)(de)起到保(bao)護(hu)(hu)管道(dao)(dao)(dao)完(wan)整性的(de)(de)(de)(de)作用。目前,已經(jing)有(you)很(hen)多學者(zhe)進行了(le)AC對埋(mai)(mai)地(di)(di)管道(dao)(dao)(dao)陰極(ji)(ji)保(bao)護(hu)(hu)的(de)(de)(de)(de)影(ying)響規律的(de)(de)(de)(de)研(yan)究(jiu),并得到了(le)一些結(jie)論。
學者們一(yi)致認(ren)為(wei)(wei),AC會(hui)(hui)使(shi)(shi)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)的效(xiao)果減弱甚至失(shi)效(xiao)。但是(shi)(shi),對于(yu)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)在(zai)(zai)(zai)遭(zao)(zao)受交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)干擾時(shi)(shi)(shi)使(shi)(shi)用(yong)更負(fu)的保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)是(shi)(shi)否可(ke)(ke)(ke)以保(bao)(bao)(bao)(bao)(bao)持管(guan)道完(wan)(wan)整性卻(que)存在(zai)(zai)(zai)著兩種不(bu)同意見。一(yi)些學者認(ren)為(wei)(wei),陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)之(zhi)所以會(hui)(hui)失(shi)效(xiao)是(shi)(shi)因(yin)為(wei)(wei)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)程度(du)(du)不(bu)夠(gou),只要(yao)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)是(shi)(shi)足夠(gou)負(fu)的,交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)腐(fu)(fu)蝕(shi)(shi)是(shi)(shi)完(wan)(wan)全(quan)(quan)可(ke)(ke)(ke)以被避(bi)免(mian)的。Hosokawa等[68]和Kajiyama等[69]認(ren)為(wei)(wei),管(guan)道即(ji)使(shi)(shi)滿(man)足-0.85 V (CSE) 的陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)標準電(dian)(dian)(dian)(dian)(dian)位(wei)(wei),也(ye)(ye)會(hui)(hui)遭(zao)(zao)受嚴重(zhong)的AC腐(fu)(fu)蝕(shi)(shi)。AC的存在(zai)(zai)(zai)會(hui)(hui)降低陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)的防腐(fu)(fu)效(xiao)果,只有(you)當(dang)(dang)(dang)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為(wei)(wei)更負(fu)時(shi)(shi)(shi)才能完(wan)(wan)全(quan)(quan)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)管(guan)道。Ibrahim等[70]認(ren)為(wei)(wei)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)干擾在(zai)(zai)(zai)兩個方面降低陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)效(xiao)果:一(yi)是(shi)(shi)金屬(shu)腐(fu)(fu)蝕(shi)(shi)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)負(fu)向(xiang)波(bo)動,二是(shi)(shi)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)的流(liu)(liu)(liu)(liu)入使(shi)(shi)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)效(xiao)率降低。Guo等[71]認(ren)為(wei)(wei)在(zai)(zai)(zai)交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)較小時(shi)(shi)(shi),原有(you)的陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)-0.85 V (CSE) 有(you)效(xiao);當(dang)(dang)(dang)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)較大(da)時(shi)(shi)(shi),若想抑(yi)制腐(fu)(fu)蝕(shi)(shi),則需要(yao)更負(fu)的陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei),如-0.95 V (CSE)。Kim等[43]認(ren)為(wei)(wei),只要(yao)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)足夠(gou)負(fu),AC腐(fu)(fu)蝕(shi)(shi)是(shi)(shi)完(wan)(wan)全(quan)(quan)可(ke)(ke)(ke)以避(bi)免(mian)的。當(dang)(dang)(dang)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為(wei)(wei)-1.1 V (CSE),交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)小于(yu)100 A/m2時(shi)(shi)(shi),造(zao)成(cheng)的腐(fu)(fu)蝕(shi)(shi)都可(ke)(ke)(ke)以忽略不(bu)計。Xu等[72]的研究也(ye)(ye)證實了這一(yi)觀點。Kuang等[73]選(xuan)用(yong)了3種陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei):-0.85,-0.925和-1.0 V (CSE),得到結(jie)論(lun)是(shi)(shi):施(shi)加交(jiao)(jiao)(jiao)流(liu)(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)干擾后,陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)并不(bu)是(shi)(shi)保(bao)(bao)(bao)(bao)(bao)持施(shi)加值而不(bu)發(fa)(fa)生改變;并且在(zai)(zai)(zai)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為(wei)(wei)-0.85 V (CSE),當(dang)(dang)(dang)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)小于(yu)10 A/m2時(shi)(shi)(shi),不(bu)發(fa)(fa)生腐(fu)(fu)蝕(shi)(shi);陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為(wei)(wei)-0.925 V (CSE),電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)在(zai)(zai)(zai)10~50 A/m2時(shi)(shi)(shi),不(bu)會(hui)(hui)發(fa)(fa)生腐(fu)(fu)蝕(shi)(shi);而在(zai)(zai)(zai)陰(yin)極(ji)(ji)(ji)(ji)(ji)保(bao)(bao)(bao)(bao)(bao)護(hu)(hu)(hu)(hu)電(dian)(dian)(dian)(dian)(dian)位(wei)(wei)為(wei)(wei)-1.0 V (CSE) 時(shi)(shi)(shi),電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)密(mi)(mi)度(du)(du)再高也(ye)(ye)不(bu)會(hui)(hui)造(zao)成(cheng)腐(fu)(fu)蝕(shi)(shi)。
與之(zhi)相反,另(ling)一些學者認為(wei)(wei),陰(yin)(yin)極保(bao)護(hu)電(dian)(dian)位(wei)(wei)過負不但(dan)(dan)(dan)不會(hui)(hui)減弱(ruo)對金(jin)屬(shu)(shu)的(de)(de)腐(fu)(fu)蝕(shi)反而(er)(er)(er)會(hui)(hui)加(jia)劇金(jin)屬(shu)(shu)的(de)(de)腐(fu)(fu)蝕(shi)。Vagramyan等(deng)[56]研究(jiu)得(de)到(dao),當(dang)陰(yin)(yin)極保(bao)護(hu)電(dian)(dian)位(wei)(wei)高(gao)于(yu)-0.95 V (SCE) 或-1.20 V (SCE) 時,在(zai)施(shi)加(jia)交(jiao)(jiao)流(liu)(liu)電(dian)(dian)后(hou)反而(er)(er)(er)會(hui)(hui)促進金(jin)屬(shu)(shu)的(de)(de)腐(fu)(fu)蝕(shi),起不到(dao)防腐(fu)(fu)的(de)(de)作用。交(jiao)(jiao)流(liu)(liu)電(dian)(dian)流(liu)(liu)密度(du)與直流(liu)(liu)密度(du)之(zhi)比(bi)同腐(fu)(fu)蝕(shi)速(su)率(lv)之(zhi)間的(de)(de)關系如圖10[74]所示,由(you)(you)圖中規律提出了加(jia)大陰(yin)(yin)極保(bao)護(hu)電(dian)(dian)流(liu)(liu)和(he)施(shi)加(jia)弱(ruo)保(bao)護(hu)電(dian)(dian)流(liu)(liu)這兩種(zhong)減小金(jin)屬(shu)(shu)腐(fu)(fu)蝕(shi)速(su)率(lv)的(de)(de)方法。唐志德等(deng)[75]研究(jiu)認為(wei)(wei),當(dang)金(jin)屬(shu)(shu)“欠保(bao)護(hu)”時,由(you)(you)于(yu)金(jin)屬(shu)(shu)表面(mian)沒有形成完(wan)整(zheng)的(de)(de)保(bao)護(hu)膜,金(jin)屬(shu)(shu)暴露在(zai)交(jiao)(jiao)流(liu)(liu)電(dian)(dian)下進而(er)(er)(er)造成了腐(fu)(fu)蝕(shi);當(dang)金(jin)屬(shu)(shu)“過保(bao)護(hu)”時,雖然形成了完(wan)整(zheng)的(de)(de)保(bao)護(hu)膜但(dan)(dan)(dan)是(shi)由(you)(you)于(yu)交(jiao)(jiao)流(liu)(liu)電(dian)(dian)的(de)(de)震(zhen)蕩作用和(he)實(shi)時電(dian)(dian)位(wei)(wei)的(de)(de)波(bo)動,最終保(bao)護(hu)膜破裂,金(jin)屬(shu)(shu)遭到(dao)腐(fu)(fu)蝕(shi)。和(he)宏偉[76]研究(jiu)得(de)出,交(jiao)(jiao)流(liu)(liu)干(gan)擾(rao)的(de)(de)存在(zai)不但(dan)(dan)(dan)會(hui)(hui)使腐(fu)(fu)蝕(shi)程度(du)大大增(zeng)加(jia)還會(hui)(hui)使陰(yin)(yin)極電(dian)(dian)流(liu)(liu)顯(xian)著(zhu)增(zeng)長,管道(dao)還會(hui)(hui)面(mian)臨腐(fu)(fu)蝕(shi)加(jia)速(su)、氫脆、陰(yin)(yin)極剝離(li)等(deng)風險。
圖10 碳鋼腐(fu)蝕(shi)速率隨(sui)交直流電流密度之比(bi)和陰保極化(hua)電位變化(hua)圖[74]
對(dui)(dui)于(yu)(yu)新的(de)(de)歐洲(zhou)標(biao)準[77],Ormellese等[78]通過研究(jiu)(jiu)存在(zai)AC干擾的(de)(de)陰(yin)極保護系統得出:(1) 由(you)于(yu)(yu)AC干擾的(de)(de)存在(zai),管道(dao)(dao)電(dian)(dian)(dian)位(wei)正(zheng)移,-850 mV標(biao)準并(bing)不能給管道(dao)(dao)提供足夠的(de)(de)保護。(2) 對(dui)(dui)于(yu)(yu)存在(zai)陰(yin)極保護的(de)(de)管道(dao)(dao),只(zhi)采用(yong)(yong)交(jiao)流腐蝕電(dian)(dian)(dian)流密度這(zhe)一個(ge)標(biao)準是(shi)(shi)不正(zheng)確的(de)(de),還需考慮交(jiao)流、直流電(dian)(dian)(dian)流密度比(bi)值(zhi)與管道(dao)(dao)電(dian)(dian)(dian)位(wei),這(zhe)也(ye)是(shi)(shi)十(shi)分(fen)重要(yao)的(de)(de)。(3) 當陰(yin)極保護電(dian)(dian)(dian)位(wei)處于(yu)(yu)-1.0~-1.2 V (CSE) 之(zhi)間,不存在(zai)過保護的(de)(de)情況,交(jiao)流、直流電(dian)(dian)(dian)流密度比(bi)值(zhi)小(xiao)于(yu)(yu)20時,可以認(ren)為(wei)陰(yin)極保護是(shi)(shi)有效的(de)(de)。除此之(zhi)外,Di Biase等[79]也(ye)指(zhi)出,因為(wei)管道(dao)(dao)上每一點的(de)(de)極化特性都不是(shi)(shi)固定(ding)不變的(de)(de),而是(shi)(shi)隨(sui)著時間而改變,這(zhe)使(shi)得標(biao)準中的(de)(de)極化特性即(ji)使(shi)十(shi)分(fen)必(bi)要(yao)但也(ye)難(nan)以在(zai)實際中應用(yong)(yong)。目(mu)前交(jiao)流電(dian)(dian)(dian)對(dui)(dui)陰(yin)極保護影響的(de)(de)評判(pan)指(zhi)標(biao)[80,81]也(ye)在(zai)不斷完善,還有待進一步的(de)(de)研究(jiu)(jiu)。
4.2 涂(tu)層(ceng)保護
埋地(di)(di)管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)采用(yong)(yong)(yong)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)和外(wai)加陰極保護聯合使用(yong)(yong)(yong)是(shi)(shi)最為經濟有(you)(you)效(xiao)的(de)(de)(de)(de)(de)(de)控制腐(fu)(fu)蝕(shi)(shi)發(fa)生(sheng)的(de)(de)(de)(de)(de)(de)措施。涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)主要作(zuo)用(yong)(yong)(yong)是(shi)(shi)使管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)與(yu)(yu)外(wai)界環(huan)境產生(sheng)物理阻隔,避免基體與(yu)(yu)周圍環(huan)境產生(sheng)相(xiang)互(hu)作(zuo)用(yong)(yong)(yong)。然而,由于(yu)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)本身在(zai)(zai)制作(zuo)完成時就會有(you)(you)如針孔等(deng)缺(que)陷的(de)(de)(de)(de)(de)(de)存在(zai)(zai),在(zai)(zai)實際施工與(yu)(yu)運行中涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)會無法避免地(di)(di)受到破(po)壞。當涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)破(po)損(sun)處有(you)(you)交(jiao)流(liu)(liu)(liu)雜(za)散電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)流(liu)(liu)(liu)過(guo)時,容(rong)易(yi)造成埋地(di)(di)管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)的(de)(de)(de)(de)(de)(de)局部腐(fu)(fu)蝕(shi)(shi),使管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)形成穿孔。目前,埋地(di)(di)管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)防腐(fu)(fu)層(ceng)(ceng)(ceng)大(da)(da)多(duo)采用(yong)(yong)(yong)具(ju)有(you)(you)較(jiao)高絕(jue)緣電(dian)(dian)(dian)(dian)(dian)阻率(lv)(lv)(lv)的(de)(de)(de)(de)(de)(de)溶結環(huan)氧粉(fen)末(mo)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)或三層(ceng)(ceng)(ceng)聚乙烯涂(tu)(tu)(tu)層(ceng)(ceng)(ceng),該(gai)類(lei)防腐(fu)(fu)層(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)效(xiao)率(lv)(lv)(lv)可達到99.9%。雖然這(zhe)能有(you)(you)效(xiao)將管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)與(yu)(yu)腐(fu)(fu)蝕(shi)(shi)環(huan)境進(jin)行隔離(li),避免環(huan)境介質對管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)。但(dan)是(shi)(shi),當管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)附近存在(zai)(zai)交(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)源時,管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)防腐(fu)(fu)層(ceng)(ceng)(ceng)絕(jue)緣性能越(yue)好,管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)上的(de)(de)(de)(de)(de)(de)感應電(dian)(dian)(dian)(dian)(dian)壓就越(yue)不容(rong)易(yi)像以(yi)前容(rong)易(yi)存在(zai)(zai)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)破(po)碎(sui)的(de)(de)(de)(de)(de)(de)管(guan)(guan)(guan)(guan)道(dao)(dao)(dao)那樣(yang)通過(guo)防腐(fu)(fu)層(ceng)(ceng)(ceng)缺(que)陷將其(qi)排(pai)出到大(da)(da)地(di)(di)中。Li等(deng)[82]研究(jiu)結果表(biao)明,在(zai)(zai)交(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)下,涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)破(po)損(sun)面(mian)積(ji)(ji)小(xiao)的(de)(de)(de)(de)(de)(de)開路(lu)電(dian)(dian)(dian)(dian)(dian)位(wei)小(xiao),涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)破(po)損(sun)面(mian)積(ji)(ji)大(da)(da)的(de)(de)(de)(de)(de)(de)開路(lu)電(dian)(dian)(dian)(dian)(dian)位(wei)大(da)(da),所(suo)以(yi)缺(que)陷面(mian)積(ji)(ji)小(xiao)的(de)(de)(de)(de)(de)(de)更容(rong)易(yi)被腐(fu)(fu)蝕(shi)(shi),而且(qie)隨著交(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)的(de)(de)(de)(de)(de)(de)不斷(duan)增大(da)(da),缺(que)陷面(mian)積(ji)(ji)小(xiao)的(de)(de)(de)(de)(de)(de)地(di)(di)方腐(fu)(fu)蝕(shi)(shi)程(cheng)度加深,缺(que)陷面(mian)積(ji)(ji)大(da)(da)的(de)(de)(de)(de)(de)(de)地(di)(di)方腐(fu)(fu)蝕(shi)(shi)速率(lv)(lv)(lv)下降(jiang)。丁清苗等(deng)[83]研究(jiu)表(biao)明,交(jiao)流(liu)(liu)(liu)干(gan)(gan)擾(rao)增加了(le)剝離(li)涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)下試樣(yang)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)傾向性及(ji)腐(fu)(fu)蝕(shi)(shi)速率(lv)(lv)(lv),且(qie)破(po)損(sun)點處試樣(yang)的(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕(shi)(shi)速率(lv)(lv)(lv)受其(qi)影(ying)響較(jiao)大(da)(da),腐(fu)(fu)蝕(shi)(shi)形態(tai)為局部腐(fu)(fu)蝕(shi)(shi)。這(zhe)是(shi)(shi)由于(yu)固定的(de)(de)(de)(de)(de)(de)外(wai)加交(jiao)流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)在(zai)(zai)小(xiao)缺(que)口(kou)處產生(sheng)了(le)較(jiao)高的(de)(de)(de)(de)(de)(de)交(jiao)流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)密(mi)度,并且(qie)腐(fu)(fu)蝕(shi)(shi)產生(sheng)的(de)(de)(de)(de)(de)(de)陽離(li)子很難從(cong)局部的(de)(de)(de)(de)(de)(de)狹小(xiao)缺(que)陷中擴散出來。另外(wai),Wang等(deng)[84]的(de)(de)(de)(de)(de)(de)研究(jiu)表(biao)明,交(jiao)流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)干(gan)(gan)擾(rao)還會使涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)發(fa)生(sheng)分(fen)層(ceng)(ceng)(ceng)剝離(li)的(de)(de)(de)(de)(de)(de)現(xian)(xian)象,且(qie)交(jiao)流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)密(mi)度越(yue)大(da)(da),涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)分(fen)層(ceng)(ceng)(ceng)越(yue)多(duo)越(yue)明顯,涂(tu)(tu)(tu)層(ceng)(ceng)(ceng)的(de)(de)(de)(de)(de)(de)剝離(li)現(xian)(xian)象越(yue)嚴(yan)重(zhong)。如圖11[37]所(suo)示,通過(guo)對兩(liang)組實驗數據(ju)進(jin)行擬(ni)合,在(zai)(zai)土壤(rang)電(dian)(dian)(dian)(dian)(dian)阻率(lv)(lv)(lv)不變的(de)(de)(de)(de)(de)(de)情況下,交(jiao)流(liu)(liu)(liu)電(dian)(dian)(dian)(dian)(dian)流(liu)(liu)(liu)密(mi)度與(yu)(yu)破(po)損(sun)面(mian)積(ji)(ji)呈倒數關系。
圖11 涂層破損面(mian)積(ji)與(yu)交(jiao)流(liu)電流(liu)密度(du)之(zhi)間關系(xi)[37]
4.3 接地排流
接地(di)排流(liu)(liu)(liu)是(shi)將管(guan)(guan)道(dao)與接地(di)體相連接,以(yi)排除管(guan)(guan)道(dao)所受(shou)到的(de)(de)(de)交(jiao)流(liu)(liu)(liu)干擾。常(chang)用(yong)的(de)(de)(de)接地(di)方式(shi)為(wei)(wei)(wei):直接接地(di)、負電(dian)位(wei)接地(di)、固態(tai)去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)接地(di)。目前,國(guo)內(nei)外最常(chang)用(yong)的(de)(de)(de)交(jiao)流(liu)(liu)(liu)緩(huan)解措施(shi)是(shi)交(jiao)流(liu)(liu)(liu)緩(huan)解地(di)床(chuang)+去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)裝(zhuang)(zhuang)置(zhi) (常(chang)用(yong)的(de)(de)(de)緩(huan)解線材(cai)料(liao)為(wei)(wei)(wei)鋅帶(dai)),鋅帶(dai)通過去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)與管(guan)(guan)道(dao)相連,去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)具有(you)阻(zu)直通交(jiao)的(de)(de)(de)作(zuo)用(yong),避免了(le)陰極保護(hu)(hu)電(dian)流(liu)(liu)(liu)的(de)(de)(de)流(liu)(liu)(liu)失。對(dui)此,國(guo)內(nei)外也進行了(le)一些計(ji)算分(fen)析工(gong)作(zuo)及(ji)實驗(yan)研究(jiu)。Lu等(deng)(deng)[85]研究(jiu)得到,去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)裝(zhuang)(zhuang)置(zhi)和鋅帶(dai)共同(tong)使(shi)用(yong)時(shi)管(guan)(guan)道(dao)的(de)(de)(de)腐蝕(shi)速(su)率(lv)比(bi)單獨使(shi)用(yong)鋅帶(dai)時(shi)要小很多。孫磊峰認為(wei)(wei)(wei)[86],目前對(dui)固態(tai)去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)排流(liu)(liu)(liu)設施(shi)全面(mian)性(xing)檢測評(ping)價(jia)依(yi)據國(guo)內(nei)標(biao)準(zhun)(zhun)缺乏詳(xiang)細內(nei)容,需要在排流(liu)(liu)(liu)設施(shi)基本狀況調查檢測、排流(liu)(liu)(liu)去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)性(xing)能檢測評(ping)價(jia)、排流(liu)(liu)(liu)位(wei)置(zhi)陰極保護(hu)(hu)效(xiao)果(guo)檢測評(ping)價(jia)等(deng)(deng)方面(mian)的(de)(de)(de)詳(xiang)細內(nei)容上完善或補充現有(you)標(biao)準(zhun)(zhun)。對(dui)有(you)陰極保護(hu)(hu)管(guan)(guan)道(dao),為(wei)(wei)(wei)了(le)陰極保護(hu)(hu)的(de)(de)(de)良好效(xiao)果(guo),建議排流(liu)(liu)(liu)地(di)床(chuang)材(cai)料(liao)盡量選擇(ze)負電(dian)位(wei)材(cai)料(liao)如鋅帶(dai)。劉波(bo)等(deng)(deng)[87]認為(wei)(wei)(wei)利(li)用(yong)固態(tai)去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)連接銅(tong)線或鋅帶(dai),在排流(liu)(liu)(liu)方面(mian)鋅帶(dai)更好,多個固態(tai)去(qu)(qu)耦(ou)(ou)(ou)(ou)合(he)(he)器(qi)(qi)(qi)同(tong)時(shi)使(shi)用(yong)可以(yi)得到更加明顯(xian)的(de)(de)(de)排流(liu)(liu)(liu)效(xiao)果(guo)。劉國(guo)[88]認為(wei)(wei)(wei),排流(liu)(liu)(liu)點的(de)(de)(de)數量及(ji)設計(ji)工(gong)程(cheng)量遠(yuan)大(da)于真正的(de)(de)(de)需求,不但造成了(le)資(zi)金的(de)(de)(de)浪費,又給管(guan)(guan)道(dao)后續的(de)(de)(de)防(fang)腐層和陰極保護(hu)(hu)檢測帶(dai)來負面(mian)影響。
4.4 其他保(bao)護方(fang)法
多年(nian)來研(yan)究人員致力于想(xiang)要(yao)防止埋(mai)地金屬(shu)管道(dao)可能(neng)遭受到(dao)的(de)(de)(de)交流干擾,減少對管道(dao)可能(neng)產(chan)(chan)生的(de)(de)(de)危害(hai),以及避免對相關操作人員可能(neng)引起危險的(de)(de)(de)發生。目前,實際當中廣泛應(ying)用的(de)(de)(de)防護方法還(huan)有(you):增加埋(mai)地管道(dao)與強電線路的(de)(de)(de)間(jian)距(ju)、電屏蔽等。但在長時(shi)間(jian)的(de)(de)(de)實踐(jian)應(ying)用和生產(chan)(chan)使用過程當中,這些方法都或多或少的(de)(de)(de)出現了(le)一些問題,也都存在各自的(de)(de)(de)局(ju)限(xian)性(xing),這些還(huan)有(you)待實驗人員不斷(duan)地進行研(yan)究和解決。
5 結語(yu)與展望
(1) 交(jiao)(jiao)流(liu)電(dian)(dian)對埋地管道的腐蝕(shi)(shi)熱力(li)學和動力(li)學過程(cheng)及保護效果都有(you)著(zhu)重要的影響作用,其中主要參數包括交(jiao)(jiao)流(liu)電(dian)(dian)密度、波(bo)形以及頻率。由于交(jiao)(jiao)流(liu)電(dian)(dian)干(gan)擾(rao)的存在,會不(bu)同程(cheng)度地促(cu)進金屬的腐蝕(shi)(shi)與增加局(ju)部腐蝕(shi)(shi)敏(min)感性。然而,已有(you)的研(yan)究成(cheng)果在臨界條(tiao)件上并沒(mei)有(you)得到(dao)統一的結論。
(2) 目前已提出多個(ge)交(jiao)流(liu)(liu)電腐(fu)(fu)蝕(shi)機(ji)(ji)(ji)(ji)理模型,包括:Faraday整流(liu)(liu)效應(ying)、陽極(ji)反應(ying)的(de)(de)不(bu)可逆性(xing)(xing)、陽極(ji)的(de)(de)去極(ji)化作用、堿化機(ji)(ji)(ji)(ji)理、自催(cui)化機(ji)(ji)(ji)(ji)制(zhi)及腐(fu)(fu)蝕(shi)產物膜層演變。雖然這(zhe)(zhe)幾種機(ji)(ji)(ji)(ji)理被(bei)廣泛認(ren)同(tong),但(dan)是(shi)幾種機(ji)(ji)(ji)(ji)理的(de)(de)內在聯系始終沒(mei)被(bei)突破,每(mei)種機(ji)(ji)(ji)(ji)理都(dou)各自受環境(jing)介(jie)質或實驗現象(xiang)產生原因不(bu)明等問(wen)題(ti)的(de)(de)影(ying)響,不(bu)同(tong)條件(jian)下并(bing)沒(mei)有統(tong)一(yi)適用的(de)(de)模型。因此(ci),今后(hou)的(de)(de)研究重點應(ying)該放在機(ji)(ji)(ji)(ji)理研究方(fang)面,特別是(shi)交(jiao)流(liu)(liu)電腐(fu)(fu)蝕(shi)機(ji)(ji)(ji)(ji)理的(de)(de)本(ben)質、內在聯系和統(tong)一(yi)性(xing)(xing),這(zhe)(zhe)會(hui)促(cu)進(jin)交(jiao)流(liu)(liu)腐(fu)(fu)蝕(shi)預測、評價及防護技術的(de)(de)進(jin)一(yi)步發展。
(3) 埋地管道(dao)在現(xian)場(chang)應(ying)(ying)用(yong)的(de)過程中,不僅(jin)僅(jin)只受交(jiao)流(liu)(liu)干擾這一(yi)種因(yin)素(su)(su)影響(xiang),目前所做(zuo)的(de)實驗研究(jiu)干擾因(yin)素(su)(su)過于單一(yi),只考慮到了(le)土壤(rang)環(huan)境、陰(yin)極保(bao)護(hu)(hu)或微生(sheng)物腐(fu)蝕的(de)影響(xiang),忽略了(le)實驗結論的(de)現(xian)場(chang)應(ying)(ying)用(yong)性,應(ying)(ying)進行(xing)例(li)如陰(yin)極保(bao)護(hu)(hu)與微生(sheng)物協同作用(yong)下對(dui)交(jiao)流(liu)(liu)電腐(fu)蝕影響(xiang)等的(de)多(duo)因(yin)素(su)(su)實驗研究(jiu)。因(yin)此(ci),在研究(jiu)的(de)過程中應(ying)(ying)該注重在埋地管道(dao)鋪設現(xian)場(chang)不同影響(xiang)因(yin)素(su)(su)與交(jiao)流(liu)(liu)電的(de)協同作用(yong)。
參考文(wen)獻
1 Han C C, Cao G F, Qin H M, et al. Analysis of failures induced by the discharge ablation of pressure-guiding tubes in valve chambers [J]. Nat. Gas Ind., 2016, 36(10): 118
1 韓昌柴, 曹國飛, 覃慧敏等. 閥室引壓管放電燒蝕失(shi)效分析(xi) [J]. 天然氣(qi)工業(ye), 2016, 36(10): 118
2 Ren Z J. Detection and protection of stray current interference of Rizhao-Dongming oil pipeline [J]. Oil Gas Storage Transport., 2015, 34: 111
2 任增(zeng)珺(jun). 日東管道雜散電(dian)流干擾檢測與防(fang)護 [J]. 油氣儲運, 2015, 34: 111
3 Hanson H R, Smart J. AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
4 Song X L, Lin H. Analysis on the research status of AC interference criterion for pipeline under the condition of Yin protection [J]. China Petrol. Chem. Stand. Qual., 2019, 39(16): 6
4 宋曉露, 林海. 陰保(bao)狀態下管道交流干(gan)擾準則研(yan)究現狀分析(xi) [J]. 中國石(shi)油和化(hua)工標準與(yu)質量, 2019, 39(16): 6
5 Zhang H P. Assessment and control of alternating current corrosion on steel pipelines [J]. Total Corros. Control, 2018, 32(11): 107
5 張(zhang)合平(ping). 埋(mai)地鋼質管道交(jiao)流腐蝕的(de)評估與控(kong)制 [J]. 全面腐蝕控(kong)制, 2018, 32(11): 107
6 Xia H, Liu J, Wang K C, et al. Investigation of electrochemical corrosion for long distance pipeline and its protection [J]. Guangdong Chem. Ind., 2018, 45(9): 163
6 夏輝, 劉俊, 王(wang)科(ke)鈔(chao)等. 電化學(xue)腐蝕(shi)對長輸管(guan)道影(ying)響(xiang)的探討與防護 [J]. 廣東(dong)化工, 2018, 45(9): 163
7 Liu Z J, Chen D Q, Jin Z, et al. Assessment code for AC corrosion of buried steel pipe [J]. Oil Gas Storage Transport., 2011, 30: 690
7 劉(liu)志軍, 陳大(da)慶, 金(jin)哲等. 埋(mai)地鋼質管(guan)道(dao)交流腐蝕的(de)評價準則 [J]. 油氣儲運, 2011, 30: 690
8 Wakelin R G, Gummow R A, Segall S M. corrosion-case histories AC, testprocedures & mitigation [A]. Corrosion 98 [C]. San Diego, California, 1998
9 Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17: 34
10 Wakelin R G, Sheldon C. Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
11 Ding Q M, Wang H, Lv H L, et al. Electrochemical study on impact of AC on cathodic protection potential for X70 steel [J]. Corros. Prot., 2011, 32: 984
11 丁(ding)清(qing)苗, 王輝, 呂亳龍(long)等. 電化學方法研究(jiu)交(jiao)流干擾對陰(yin)極(ji)保護(hu)電位的(de)影響 [J]. 腐蝕與防護(hu), 2011, 32: 984
12 Li Y, Zhang L J, Tao G, et al. Experiment analysis of influence factors of corrosion induced by alternating current interference for buried steel pipelines [J]. Total Corros. Control, 2011, 25(11): 38
12 李源, 張禮敬, 陶剛等(deng). 埋地鋼(gang)質(zhi)管道交流干(gan)擾腐蝕(shi)(shi)影(ying)響因素實驗分析 [J]. 全面(mian)腐蝕(shi)(shi)控制, 2011, 25(11): 38
13 Wang Y M, Zhang L J, Tao G, et al. Safety research on corrosion induced by AC interference for buried pipeline based on fuzzy theory [J]. Ind. Saf. Environ. Prot., 2011, 37(9): 47
13 王益敏, 張禮敬, 陶(tao)剛等. 基于模糊理論的埋地(di)管道交流干擾腐(fu)蝕安(an)全性研究 [J]. 工業安(an)全與環保, 2011, 37(9): 47
14 Jiang Z T, Du Y X, Dong L, et al. Effect of AC current on corrosion potential of Q235 steel [J]. Acta Metall. Sin., 2011, 47: 997
14 姜子濤(tao), 杜艷霞, 董亮等. 交(jiao)流電(dian)對Q235鋼腐蝕電(dian)位的(de)影響(xiang)規律研(yan)究 [J]. 金(jin)屬(shu)學(xue)報, 2011, 47: 997
15 Weng W J, Wang N. Carbon steel corrosion induced by alternating current [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270
15 翁永基, 王寧. 碳鋼交流電腐蝕機理(li)的探討(tao) [J]. 中(zhong)國腐蝕與防護學報, 2011, 31: 270
16 Hu S X. Present status and prospect of cathodic protection for pipeline [J]. Corros. Prot., 2004, 25(3): 93
16 胡士信. 管道陰極保護(hu)技術(shu)現狀與(yu)展(zhan)望 [J]. 腐蝕與(yu)防(fang)護(hu), 2004, 25(3): 93
17 Zhang J Y, Wang F C, Zhang Y M. Discussion on the safety distance and space of high-tension transmission line over buried pipelines [J]. Oil Gas Storage Transport., 2006, 25(4): 47
17 張俊義, 王富才(cai), 張彥敏. 高(gao)壓輸(shu)電線(xian)與(yu)埋地管道相互影響的安全問題 [J]. 油氣儲(chu)運(yun), 2006, 25(4): 47
18 Li W, Du Y X, Jiang Z T, et al. Research progress on AC interference of electrified railway on buried pipeline [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 381
18 李偉(wei), 杜艷霞, 姜子濤等. 電氣化鐵(tie)路對埋地(di)管(guan)道交(jiao)流干擾的研究進(jin)展 [J]. 中(zhong)國腐蝕與防護學報, 2016, 36: 381
19 Ouyang X H, Yan M, Liu Q Z, et al. Criteria of high-voltage transmission lines to discriminate AC corrosion of buried pipelines [J]. Sci. Technol. Innovat. Herald, 2015, (34): 67
19 歐陽(yang)孝含, 閻明, 劉全楨等. 高壓(ya)輸電線對埋地管道交流腐(fu)蝕(shi)相關(guan)判別的準則 [J]. 科(ke)技創新導報, 2015, (34): 67
20 Zhang W Y. Stray current corrosion and protection [J]. Total Corros. Control, 2017, 31(5): 1
20 張文(wen)毓. 雜散(san)電流(liu)的腐蝕與防(fang)護 [J]. 全(quan)面腐蝕控制(zhi), 2017, 31(5): 1
21 Yin K H, Xiong X J, Zhang D C. Interference of power frequency electromagnetic field to underground oil and gas pipeline [J]. Chengdu Kejidaxue Xuebao, 1979, (1): 150
21 尹可華, 熊祥健, 張(zhang)達昌. 工頻電磁場對(dui)地(di)下石(shi)油天(tian)然氣管道的干擾 [J]. 成都科技大學學報, 1979, (1): 150
22 Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
23 Williams J F. Corrosion of metals under the influence of alternating current [J]. Mater. Prot., 1966, 5: 52
24 Li M, Shu Y, Yan M C, et al. Corrosion electrochemical behavior of X80 pipeline steel under AC current interference [J]. Total Corros. Control, 2017, 31(8): 54
24 李明, 舒韻, 閆茂成等. 交流電(dian)干擾下X80管(guan)線鋼的(de)腐(fu)蝕電(dian)化(hua)學行(xing)為 [J]. 全面腐(fu)蝕控制, 2017, 31(8): 54
25 Guo Y B, Meng T, Wang D G, et al. Experimental research on the corrosion of X series pipeline steels under alternating current interference [J]. Eng. Fail. Anal., 2017, 78: 87
26 Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52: 612
27 Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
28 McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequency reversed current on electrolytic corrosion [J]. J.Frankl. Inst., 1916, 182(1): 108
29 Yunovich M, Thompson N G. AC corrosion: Mechanism and proposed model [A]. Proceedings of the 2004 IPC [C]. Calgary, 2004
30 Bruckner W H. The effect of 60 cycle alternating current on the corrosion of steels and other metals buried in soils [R]. Illinois: Engineering Experiment Station Bulletion 470, University of Illi-nois, Urbana, 1964
31 Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: Parameters influencing corrosion rate [J]. Corros. Sci., 2010, 52: 916
32 Cao C N. Principle of corrosion electrochemistry [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
32 曹楚(chu)南. 腐蝕電化(hua)學原(yuan)理 [M]. 第(di)三版. 北京: 化(hua)學工(gong)業出版社, 2008
33 Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34: 428
34 Li Y, Wang Y C, Liang J L. Research of corrosion behavior of X70 pipeline steel in AC environment [J]. Petrochem. Ind. Technol., 2017, 24(3): 78
34 李巖, 王一程, 梁金祿. 在交(jiao)流電作用下X70管線鋼腐(fu)蝕行(xing)為(wei)研究 [J]. 石化技術, 2017, 24(3): 78
35 Wang X, Zhang P, Wang F, et al. Alternating current corrosion behavior of X80 steel in 0.5 mol/L NaHCO3 solution [J]. Corros. Prot., 2015, 36: 846
35 王霞, 張鵬(peng), 王飛等. X80鋼(gang)在0.5 mol/L NaHCO3溶液中的交流(liu)電流(liu)腐(fu)蝕(shi)行(xing)為(wei) [J]. 腐(fu)蝕(shi)與防(fang)護(hu), 2015, 36: 846
36 Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005 [C]. Houston, Texas, 2005
37 Nielsen L V, Nielsen K V, Baumgarten B, et al. AC induced corrosion in pipelines: detection, characterization and mitigation [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
38 Panossian Z, Filho S E A, de Almeida N L, et al. Effect of alternating current by high power lines voltage and electric transmission systems in pipelines corrosion [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
39 Tang D Z. Study of alternating current interference on cathodic protection system of buried pipeline [D]. Beijing: University of Science and Technology Beijing, 2016
39 唐德志. 交流電流對埋地管道陰極保護系統的影響(xiang)規律(lv)及(ji)作(zuo)用機制研究 [D]. 北京: 北京科技大學(xue), 2016
40 Goidanich S, Lazzari L, Ormellese M. AC corrosion-Part 1: Effects on overpotentials of anodic and cathodic processes [J]. Corros. Sci., 2010, 52: 491
41 Ma J, Zhu M, Yuan Y F, et al. Corrosion behavior of X100 pipeline steel with different microstructures in simulated solution of Golmud soil under AC interference [J]. Surf. Technol., 2019, 48(8): 272
41 馬俊, 朱敏, 袁永鋒(feng)等. 交流干(gan)擾下不同組織X100鋼在格爾木(mu)土壤模(mo)擬溶液中的腐蝕(shi)行為 [J]. 表面技(ji)術, 2019, 48(8): 272
42 Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
42 王新華, 楊國勇, 黃海等. 埋(mai)地(di)鋼質管(guan)道交流(liu)(liu)雜散(san)電流(liu)(liu)腐蝕規律研究 [J]. 中國腐蝕與防護學報, 2013, 33: 293
43 Kim D K, Muralidharan S, Ha T H, et al. Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments [J]. Electrochim. Acta, 2006, 51: 5259
44 Wu W, Pan Y, Liu Z Y, et al. Electrochemical and stress corrosion mechanism of submarine pipeline in simulated seawater in presence of different alternating current densities [J]. Materials, 2018, 11: 1074
45 Reyes T, Bhola S, Olson D L, et al. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy [J]. AIP Conf. Proc., 2011, 1335: 1241
46 Yang Y. A corrosion behavior and mechanism of X70 pipeline steel[D]. Qingdao: China University of Peroleum (East China), 2013
46 楊燕. X70鋼交流腐蝕行(xing)為(wei)及機理研究 [D]. 青島: 中國(guo)石油大學(華東), 2013
47 Liu Z Y, Du C W, Li C, et al. Stress corrosion cracking of welded API X70 pipeline steel in simulated underground water [J]. J. Mater. Eng. Perform., 2013, 22: 2550
48 Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on stress corrosion cracking behavior and mechanism of X80 pipeline steel in near-neutral solution [J]. J. Nat. Gas Sci. Eng., 2017, 38: 458
49 Chin D T, Sachdev P. Corrosion by alternating current: Polarization of mild steel in neutral electrolytes [J]. J. Electrochem. Soc., 1983, 130: 1714
50 He H W, Cao B, Bai D J, et al. Influence of AC stray current on corrosion electrochemistry behavior [J]. Corros. Prot., 2014, 35: 721
50 和(he)宏(hong)偉, 曹備, 白冬軍等. 交流雜散電(dian)流對金屬腐(fu)蝕(shi)電(dian)化學行為的影響(xiang) [J]. 腐(fu)蝕(shi)與防護, 2014, 35: 721
51 Bertocci U. AC induced corrosion. The effect of an alternating voltage on electrodes under charge-transfer control [J]. Corrosion, 1979, 35: 211
52 Wendt J L, Chin D T. The a. c. corrosion of stainless steel—II. The polarization of SS304 and SS316 in acid sulfate solutions [J]. Corros. Sci., 1985, 25: 901
53 Radeka R, Zorovic D, Barisin D. Influence of frequency of alternating current on corrosion of steel in seawater [J]. Anti-Corros. Methods Mater., 1980, 27: 13
54 Dyer C K, Alwitt R S. Surface changes during A.C. etching of aluminum [J]. J. Electrochem. Soc., 1981, 128: 300
55 Guo M, Yang Q. Effects of AC etching waveforms on micro-photography and properties of the low-voltage etched aluminum foil [J]. Electr. Comp. Mater., 2013, 32(2): 26
55 郭(guo)敏, 楊琴. 交流電(dian)波形對低(di)壓腐蝕鋁箔微(wei)觀形貌(mao)及性能的影(ying)響 [J]. 電(dian)子元件(jian)與材料(liao), 2013, 32(2): 26
56 Vagramyan A T, Sutyagina A A. The effect of alternating current on the electrodeposition of nickel [J]. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1952, 1: 399
57 Pookote S R, Chin D T. Effect of alternating current on the under ground corrosion of steels [J]. Mater. Perform., 1978, 17: 9
58 Zhu M, Du C W, Li X G, et al. Effect of alternating current frequency on corrosion behavior of X65 steel in CO32-/HCO3- solution [J]. J. Mater. Eng., 2014, (11): 85
58 朱(zhu)敏(min), 杜翠薇, 李曉剛等. 交流電頻率對X65鋼在CO32-/HCO3-溶(rong)液中腐蝕行為(wei)的影響 [J]. 材料(liao)工程, 2014, (11): 85
59 Helm G, Heim T, Heinzen H, et al. Investigation of corrosion of cathodically protected steel subjected to alternating currents [J]. 3R Int., 1993, 32: 246
60 Fu Y, Kou J, Du C W. Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution [J]. Anti-Corros. Methods Mater., 2019, 66: 868
61 Tu C Y, Liu Q. Study on alternating current corrosion behavior of X80 coating steel [J]. Total Corros. Control, 2017, 31(12): 69
61 涂承(cheng)媛, 劉強. 交流雜散(san)電流作用下X80涂層鋼的(de)腐蝕(shi)行為研究 [J]. 全面腐蝕(shi)控制, 2017, 31(12): 69
62 Zhang H, Du Y X, Li W, et al. Investigation on AC-induced corrosion behavior and product film of X70 steel in aqueous environment with various ions [J]. Acta Metall. Sin., 2017, 53: 975
62 張慧(hui), 杜艷霞, 李(li)偉(wei)等. 不(bu)同環境(jing)介(jie)質(zhi)中X70鋼的交(jiao)流腐(fu)蝕行為及腐(fu)蝕產物(wu)膜(mo)層分析(xi) [J]. 金(jin)屬(shu)學(xue)報, 2017, 53: 975
63 Torstensen A. AC corrosion on cathodically protected steel [D]. Trondheim: Norwegian University of Science and Technology, 2012
64 Lilleby L. Effect of AC current on calcareous deposits [D]. Trondheim: Norwegian University of Science and Technology, 2009
65 Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
65 卿永(yong)長, 楊志煒, 鮮俊等. 交流(liu)電和微(wei)生(sheng)物共同(tong)作用下Q235鋼的(de)腐蝕行為 [J]. 金屬學報, 2016, 52: 1142
66 Qing Y C, Bai Y L, Xu J, et al. Effect of alternating current and sulfate-reducing bacteria on corrosion of X80 pipeline steel in soil-extract solution [J]. Materials, 2019, 12: 144
67 NACE SP0169 Control of external corrosion on underground or submerged metallic piping systems [S]. NACE, 1996
68 Hosokawa Y, Kajiyama F, Nakamura Y. New CP criteria for elimination of the risks of AC corrosion and overprotection on cathodically protected pipelines [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
69 Kajiyama F, Nakamura Y. Effect of induced alternating current voltage on cathodically protected pipelines paralleling electric power transmission lines [J]. Corrosion, 1999, 55: 200
70 Ibrahim I, Takenouti H, Tribollet B, et al. Harmonic analysis study of the AC corrosion of buried pipelines under cathodic protection [A]. Corrosion 2007 [C]. Nashville, Tennessee, 2007
71 Guo Y B, Tan H, Meng T, et al. Effects of alternating current interference on the cathodic protection for API 5L X60 pipeline steel [J]. J. Nat. Gas Sci. Eng., 2016, 36: 414
72 Xu L Y, Su X, Cheng Y F. Effect of alternating current on cathodic protection on pipelines [J]. Corros. Sci., 2013, 66: 263
73 Kuang D, Cheng Y F. Effects of alternating current interference on cathodic protection potential and its effectiveness for corrosion protection of pipelines [J]. Corros. Eng. Sci. Technol., 2017, 52: 22
74 Ormellese M, Lazzari L, Goidanich S, et al. CP criteria assessment in the presence of AC interference [A]. Corrosion 2008 [C]. New Orleans, Louisiana, 2008
75 Tang D Z, Du Y X, Lu M X, et al. Progress in the mutual effects between AC interference and the cathodic protection of buried pipelines [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 351
75 唐(tang)德志, 杜艷霞(xia), 路民旭(xu)等. 埋(mai)地(di)管道(dao)交流(liu)干(gan)擾(rao)與陰極保護(hu)相互作用研究進展(zhan) [J]. 中國(guo)腐蝕與防護(hu)學報, 2013, 33: 351
76 He H W. Influence of AC stray current on corrosion of anti-corrosion layer defect [J]. Gas Heat, 2018, 38(11): B06
76 和(he)宏偉. 交流雜(za)散電(dian)流對防腐層缺陷的腐蝕影(ying)響 [J]. 煤氣與熱力, 2018, 38(11): B06
77 UNI CEN/TS 15280 Evaluation of A.C. corrosion likelihood of buried pipelines-Application to cathodically protected pipelines [S]. 2006
78 Ormellese M, Lazzari L, Brenna A, et al. Proposal of CP criterion in the presence of AC-interference [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010
79 Di Biase L, Cigna R, Fumei O. AC corrosion and cathodic protection of buried pipelines [A]. Corrosion 2010 [C]. San Antonio, Texas, 2010
80 , Corrosion of metals and alloys-Determination of AC corrosion-Protection criteria [S]. 2015
81 NACE SP0169-2013, Control of external corrosion on underground or submerged metallic piping systems [S]. 2013
82 Li Z, Li C Y, Qian H C, et al. Corrosion behavior of X80 steel with coupled coating defects under alternating current interference in alkaline environment [J]. Materials, 2017, 10: 720
83 Ding Q M, Wang Y J, Cui Y Y, et al. Effect of AC interference on the corrosion behavior of pipeline steel under disbonded coatings [J]. Corros. Prot., 2018, 39: 349
83 丁清苗, 王宇君, 崔(cui)艷雨等. 交(jiao)流干擾(rao)對剝離涂(tu)層下(xia)管線鋼腐蝕(shi)(shi)行為(wei)的影響(xiang) [J]. 腐蝕(shi)(shi)與防護, 2018, 39: 349
84 Wang L W, Cheng L J, Li J R, et al. Combined effect of alternating current interference and cathodic protection on pitting corrosion and stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH environment [J]. Materials, 2018, 11: 465
85 Lu M X, Tang D Z, Du Y X, et al. Investigation on corrosion of zinc ribbon under alternating current [J]. Corros. Eng. Sci. Technol., 2015, 50: 256
86 Sun L F. Practice of comprehensive detection and evaluation of AC stray current discharged by solid state decoupler combined with ground bed material [J]. Total Corros. Control, 2019, 33(8): 62
86 孫磊峰. 固態去耦合器接地排流(liu)設施全面性檢測評價的實(shi)踐 [J]. 全面腐(fu)蝕(shi)控(kong)制, 2019, 33(8): 62
87 Liu B, Zhao Y G, Zhao S H, et al. Analysis of interference of high-speed rail current with cathodic protection of pipeline and countermeasures [J]. Corros. Sci. Prot. Technol., 2018, 30: 94
87 劉波, 趙(zhao)永剛, 趙(zhao)書華(hua)等. 高鐵運行(xing)電(dian)流對(dui)管(guan)道(dao)陰極保(bao)護干擾分析與(yu)防護措施(shi) [J]. 腐(fu)蝕科學與(yu)防護技術(shu), 2018, 30: 94
88 Liu G. Application of solid state-decoupler in AC interference mitigation of pipelines [J]. Oil Gas Storage Transport., 2016, 35: 449
88 劉國. 固(gu)態去(qu)耦合器在(zai)管道交(jiao)流干擾防護中(zhong)的應用 [J]. 油氣(qi)儲運(yun), 2016, 35: 449