无码精品人妻一区二区三区影院_国产乱子经典视频在线观看_亚洲国产精品sss在线观看av_国产国语在线播放视频

硫酸鹽還原菌對鋼材腐蝕行為的研究進展

2021-05-14 02:55:46 hualin

摘要:綜(zong)述了(le)硫(liu)酸(suan)鹽還原菌(SRB)微生物腐(fu)蝕(shi)(shi)(shi)與(yu)防護(hu)的(de)(de)(de)研(yan)(yan)究(jiu)現狀,總結了(le)厭氧(yang)生物膜的(de)(de)(de)形 成過程(cheng)(cheng)及對(dui)鋼材(cai)腐(fu)蝕(shi)(shi)(shi)的(de)(de)(de)影響,并在(zai)此(ci)基礎上(shang)介紹(shao)了(le) SRB 對(dui)金屬(shu)材(cai)料(liao)的(de)(de)(de)腐(fu)蝕(shi)(shi)(shi)機(ji)理(li),包(bao)括陰極(ji)去 極(ji)化機(ji)理(li)、代(dai)謝產(chan)物腐(fu)蝕(shi)(shi)(shi)機(ji)理(li)、Fe/FeS 微電池作用(yong)機(ji)理(li)等。分析了(le) SRB 代(dai)謝產(chan)生的(de)(de)(de)胞(bao)外聚 合物(EPS)在(zai)金屬(shu)腐(fu)蝕(shi)(shi)(shi)過程(cheng)(cheng)中起到的(de)(de)(de)作用(yong),并詳細介紹(shao)了(le) SRB 與(yu)好氧(yang)型(xing)鐵氧(yang)化菌(IOB)、 典型(xing)腐(fu)蝕(shi)(shi)(shi)性陰離子(Cl/SO42)、彈(dan)性應力以及酸(suan)性氣體(ti) CO2之(zhi)間的(de)(de)(de)微生物腐(fu)蝕(shi)(shi)(shi)協同(tong)作用(yong)。最后系統(tong)總結了(le) SRB 腐(fu)蝕(shi)(shi)(shi)研(yan)(yan)究(jiu)中較(jiao)為(wei)普遍的(de)(de)(de)防腐(fu)蝕(shi)(shi)(shi)手段以及最新研(yan)(yan)究(jiu)進展,從而為(wei)后續 SRB 腐(fu)蝕(shi)(shi)(shi)與(yu)防護(hu)提(ti)供參考。

關鍵詞:微(wei)生物腐(fu)蝕;硫酸鹽(yan)還(huan)原菌(SRB);胞外聚合(he)物(EPS);協(xie)同作用;腐(fu)蝕控制

微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)(MIC)可(ke)以(yi)通(tong)過依靠(kao)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)自身(shen)的(de)(de)(de)生(sheng)(sheng)命活動及(ji)其(qi)(qi)(qi)代(dai)謝產物(wu)(wu)(wu)(wu)(wu)(wu)(wu)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)作用(yong)直(zhi)接或間(jian)接地影(ying)響(xiang)(xiang)金(jin)(jin)屬(shu)(shu)材(cai)(cai)料腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)過程[1] 。MIC 的(de)(de)(de)本質是(shi)電(dian)化學腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),并且在(zai)非生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)的(de)(de)(de)作用(yong)過程中(zhong)(zhong)引(yin)(yin)入了生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)因素(su)的(de)(de)(de)影(ying)響(xiang)(xiang),其(qi)(qi)(qi)常見的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)形式是(shi)點(dian)蝕(shi)(shi)(shi)(shi)(shi)[2] 。MIC 可(ke)直(zhi)接從金(jin)(jin)屬(shu)(shu)表(biao)面(mian)(mian)獲取電(dian)子,來加速金(jin)(jin)屬(shu)(shu)的(de)(de)(de)溶解,其(qi)(qi)(qi)目(mu)的(de)(de)(de)是(shi)為了獲得能(neng)(neng)量(liang)[3] 。微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)通(tong)過在(zai)生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)膜下的(de)(de)(de)富集和(he)生(sheng)(sheng)長(chang),能(neng)(neng)直(zhi)接加速金(jin)(jin)屬(shu)(shu)基體(ti)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),由其(qi)(qi)(qi)引(yin)(yin)起(qi)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)約(yue)占腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)總量(liang)的(de)(de)(de)20%以(yi)上,造(zao)(zao)成(cheng)的(de)(de)(de)經(jing)濟損失巨大(da)(da)[4] 。近年(nian)來有關(guan)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)與防護研究較(jiao)多的(de)(de)(de)是(shi)硫酸鹽還(huan)原菌(SRB),作為典型的(de)(de)(de)厭氧型腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu),它能(neng)(neng)夠把 SO42-還(huan)原成(cheng) H2S 來獲得能(neng)(neng)量(liang)[5],也是(shi)對材(cai)(cai)料(包括金(jin)(jin)屬(shu)(shu)材(cai)(cai)料和(he)非金(jin)(jin)屬(shu)(shu)材(cai)(cai)料)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)貢獻較(jiao)大(da)(da)的(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)性微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)之一(yi)。研究發(fa)現,70%的(de)(de)(de)微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)都是(shi)由 SRB 造(zao)(zao)成(cheng)的(de)(de)(de),其(qi)(qi)(qi)廣泛(fan)存(cun)在(zai)于海水、土壤、油(you)井和(he)油(you)氣運輸管道內[6] ,SRB 在(zai)新(xin)陳(chen)代(dai)謝過程中(zhong)(zhong)產生(sheng)(sheng)的(de)(de)(de)具有強腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)性的(de)(de)(de)硫化物(wu)(wu)(wu)(wu)(wu)(wu)(wu)會影(ying)響(xiang)(xiang)金(jin)(jin)屬(shu)(shu)表(biao)面(mian)(mian)膜電(dian)阻的(de)(de)(de)變化[7]。隨(sui)著(zhu)對微生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)尤其(qi)(qi)(qi)是(shi) SRB 研究的(de)(de)(de)不斷深入,目(mu)前已發(fa)現 SRB 存(cun)在(zai)著(zhu)促進或抑制金(jin)(jin)屬(shu)(shu)材(cai)(cai)料腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)的(de)(de)(de)作用(yong),而這兩種作用(yong)效果與生(sheng)(sheng)物(wu)(wu)(wu)(wu)(wu)(wu)(wu)膜的(de)(de)(de)形成(cheng)及(ji)其(qi)(qi)(qi)代(dai)謝產物(wu)(wu)(wu)(wu)(wu)(wu)(wu)密切相關(guan)。

鋼(gang)(gang)材(cai)在(zai)石油(you)化(hua)(hua)(hua)工行業的(de)(de)(de)(de)(de)(de)(de)使用(yong)(yong)量(liang)大(da)(da)于(yu) 90%,被(bei)稱為(wei)“工業的(de)(de)(de)(de)(de)(de)(de)骨骼”,微(wei)生(sheng)(sheng)(sheng)物(wu)(wu)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)是鋼(gang)(gang)材(cai)的(de)(de)(de)(de)(de)(de)(de)主要腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)形式之一,也(ye)(ye)(ye)是目前最(zui)受關注和(he)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)的(de)(de)(de)(de)(de)(de)(de)熱點課題[8]。碳(tan)(tan)鋼(gang)(gang)是一種(zhong)典(dian)型的(de)(de)(de)(de)(de)(de)(de)鋼(gang)(gang)材(cai),其(qi)在(zai)不(bu)同環境(jing)下(xia)(xia)易受腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang)而(er)(er)造成(cheng)失效,近(jin)幾年(nian)有(you)關 SRB 對(dui)(dui)碳(tan)(tan)鋼(gang)(gang)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行為(wei)的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)較多。劉靖等(deng)(deng)[9]采(cai)(cai)用(yong)(yong)電(dian)化(hua)(hua)(hua)學(xue)阻抗譜(EIS)分析(xi)了(le)(le)碳(tan)(tan)鋼(gang)(gang)在(zai)含(han)有(you) SRB 環境(jing)下(xia)(xia)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行為(wei),結(jie)果(guo)(guo)(guo)發(fa)現(xian)(xian)在(zai)碳(tan)(tan)鋼(gang)(gang)表面(mian)形成(cheng)的(de)(de)(de)(de)(de)(de)(de) SRB 生(sheng)(sheng)(sheng)物(wu)(wu)膜使得碳(tan)(tan)鋼(gang)(gang)表面(mian)的(de)(de)(de)(de)(de)(de)(de)微(wei)環境(jing)發(fa)生(sheng)(sheng)(sheng)了(le)(le)改變(bian),從(cong)而(er)(er)促進(jin)(jin)碳(tan)(tan)鋼(gang)(gang)點蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)。但該(gai)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)中(zhong)只是采(cai)(cai)用(yong)(yong)了(le)(le)單一掃描電(dian)鏡(jing)(SEM)對(dui)(dui)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)表面(mian)形貌進(jin)(jin)行觀察,缺少對(dui)(dui)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)產物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)組成(cheng)(元(yuan)素/相(xiang))分析(xi)。馬磊(lei)等(deng)(deng)[10]通(tong)過(guo)(guo)采(cai)(cai)用(yong)(yong)電(dian)化(hua)(hua)(hua)學(xue)方法研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)了(le)(le)在(zai)不(bu)同腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)介質條(tiao)件下(xia)(xia) SRB對(dui)(dui)碳(tan)(tan)鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行為(wei),實驗結(jie)果(guo)(guo)(guo)表明 SRB 對(dui)(dui)碳(tan)(tan)鋼(gang)(gang)有(you)明顯的(de)(de)(de)(de)(de)(de)(de)加(jia)速腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)作用(yong)(yong),而(er)(er)且(qie)(qie)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)形貌以點蝕(shi)(shi)(shi)(shi)為(wei)主。有(you)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)發(fa)現(xian)(xian)[11]材(cai)料表面(mian)出現(xian)(xian)點蝕(shi)(shi)(shi)(shi)坑。Fan 等(deng)(deng)[12]鋼(gang)(gang)在(zai)接(jie)種(zhong)了(le)(le) SRB 的(de)(de)(de)(de)(de)(de)(de)飽和(he) CO2油(you)田注入(ru)水中(zhong)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行為(wei),結(jie)果(guo)(guo)(guo)表明 SRB 生(sheng)(sheng)(sheng)物(wu)(wu)膜中(zhong)分散的(de)(de)(de)(de)(de)(de)(de) Fe2S3,SRB 存在(zai)時(shi)也(ye)(ye)(ye)會導致并(bing)加(jia)速石油(you)天然氣輸送(song)和(he)海(hai)底管(guan)線鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi),使利用(yong)(yong)動電(dian)位極化(hua)(hua)(hua)曲線(PDP)和(he)電(dian)化(hua)(hua)(hua)學(xue)阻抗譜(EIS)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)了(le)(le) X60與(yu)(yu)X60 鋼(gang)(gang)基(ji)體(ti)可(ke)能(neng)形成(cheng)電(dian)偶,從(cong)而(er)(er)加(jia)速鋼(gang)(gang)基(ji)體(ti)的(de)(de)(de)(de)(de)(de)(de)局部腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)。然而(er)(er),該(gai)研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)并(bing)沒有(you)對(dui)(dui)碳(tan)(tan)鋼(gang)(gang)在(zai) CO2和(he) SRB 共(gong)存環境(jing)中(zhong)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)機理進(jin)(jin)行分析(xi),對(dui)(dui) SRB 的(de)(de)(de)(de)(de)(de)(de)作用(yong)(yong)機理有(you)必要進(jin)(jin)一步(bu)探(tan)究(jiu)(jiu)(jiu)(jiu)。葛嵐等(deng)(deng)[13]通(tong)過(guo)(guo)改變(bian)接(jie)種(zhong)到模(mo)擬(ni)海(hai)水中(zhong)的(de)(de)(de)(de)(de)(de)(de) SRB 數量(liang),結(jie)果(guo)(guo)(guo)發(fa)現(xian)(xian) X70 鋼(gang)(gang)的(de)(de)(de)(de)(de)(de)(de)自腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)流密(mi)度隨著(zhu) SRB 數量(liang)的(de)(de)(de)(de)(de)(de)(de)增加(jia)而(er)(er)增大(da)(da),且(qie)(qie)試(shi)樣(yang)鋼(gang)(gang)表面(mian)有(you)點蝕(shi)(shi)(shi)(shi)坑出現(xian)(xian)。Zhai 等(deng)(deng)[14]通(tong)過(guo)(guo)采(cai)(cai)用(yong)(yong)電(dian)化(hua)(hua)(hua)學(xue)測(ce)試(shi)方法研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)了(le)(le) 2507雙(shuang)相(xiang)不(bu)銹(xiu)鋼(gang)(gang)浸泡在(zai)不(bu)同含(han)量(liang)的(de)(de)(de)(de)(de)(de)(de) SRB 冷卻水模(mo)擬(ni)溶液中(zhong)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行為(wei),結(jie)果(guo)(guo)(guo)表明不(bu)銹(xiu)鋼(gang)(gang)在(zai)含(han)2%SRB 溶液中(zhong)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)速率提高了(le)(le) 4%以上,而(er)(er)且(qie)(qie) SRB 生(sheng)(sheng)(sheng)物(wu)(wu)膜的(de)(de)(de)(de)(de)(de)(de)形成(cheng)也(ye)(ye)(ye)會使不(bu)銹(xiu)鋼(gang)(gang)表面(mian)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)傾向增大(da)(da)。Ohashi 等(deng)(deng)[15]研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)了(le)(le) 5 種(zhong)不(bu)銹(xiu)鋼(gang)(gang)材(cai)料在(zai) SRB 生(sheng)(sheng)(sheng)物(wu)(wu)膜存在(zai)和(he)無(wu)菌條(tiao)件下(xia)(xia)的(de)(de)(de)(de)(de)(de)(de)海(hai)洋縫(feng)隙(xi)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi),研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)發(fa)現(xian)(xian)暴露于(yu)生(sheng)(sheng)(sheng)物(wu)(wu)膜環境(jing)中(zhong)的(de)(de)(de)(de)(de)(de)(de)各雙(shuang)相(xiang)合金上觀察到的(de)(de)(de)(de)(de)(de)(de)縫(feng)隙(xi)腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)量(liang)較大(da)(da),且(qie)(qie)樣(yang)品形貌損(sun)傷相(xiang)比無(wu)菌條(tiao)件下(xia)(xia)的(de)(de)(de)(de)(de)(de)(de)更加(jia)嚴重(zhong)。由(you)以上研(yan)(yan)究(jiu)(jiu)(jiu)(jiu)也(ye)(ye)(ye)可(ke)以看出,金屬(shu)材(cai)料表面(mian)的(de)(de)(de)(de)(de)(de)(de) MIC 行為(wei)往往與(yu)(yu)微(wei)生(sheng)(sheng)(sheng)物(wu)(wu)膜的(de)(de)(de)(de)(de)(de)(de)形成(cheng)密(mi)不(bu)可(ke)分,成(cheng)膜過(guo)(guo)程(cheng)能(neng)夠加(jia)速局部腐(fu)(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)[16]。

隨著對(dui)(dui)(dui)(dui) SRB 的(de)(de)(de)深入研究,有(you)(you)研究發(fa)現(xian)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)不僅能促進材料(liao)的(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi),在(zai)一(yi)定(ding)的(de)(de)(de)情況(kuang)下還(huan)可以(yi)抑(yi)制腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)進行(xing)[17, 18],從(cong)而(er)減輕對(dui)(dui)(dui)(dui)金屬(shu)材料(liao)的(de)(de)(de)破壞(huai)。許萍(ping)等(deng)[19]指(zhi)出,有(you)(you)些微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)自(zi)身(shen)具有(you)(you)防腐(fu)(fu)(fu)(fu)蝕(shi)效果,其生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)的(de)(de)(de)形成(cheng)和(he)生(sheng)(sheng)(sheng)(sheng)(sheng)長不會引發(fa)腐(fu)(fu)(fu)(fu)蝕(shi),反而(er)能夠抑(yi)制腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)。Yuan等(deng)[20] 研究發(fa)現(xian) SRB 在(zai)代謝過程中(zhong)(zhong)會產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)大量(liang)的(de)(de)(de)侵蝕(shi)性硫化(hua)物(wu)(wu)(wu)(wu),其能與(yu)基體(ti)材料(liao)反應(ying)產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)一(yi)薄(bo)層(ceng)鐵硫化(hua)合物(wu)(wu)(wu)(wu),從(cong)而(er)對(dui)(dui)(dui)(dui)鋼(gang)(gang)(gang)材表(biao)面(mian)(mian)起到鈍(dun)化(hua)作(zuo)用(yong)(yong)(yong)(yong)并提供(gong)連續(xu)保護(hu)。吳亞楠[21]通過采用(yong)(yong)(yong)(yong)電(dian)(dian)化(hua)學(xue)方法研究了(le)污水系統(tong)中(zhong)(zhong)的(de)(de)(de) SRB 對(dui)(dui)(dui)(dui)鋼(gang)(gang)(gang)材的(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)狀況(kuang),結果發(fa)現(xian) SRB 對(dui)(dui)(dui)(dui) Q235 鋼(gang)(gang)(gang)管(guan)的(de)(de)(de)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)蝕(shi)十分(fen)嚴重,在(zai)浸泡(pao)初(chu)期(qi),SRB 在(zai)一(yi)定(ding)程度上(shang)形成(cheng)的(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)抑(yi)制了(le)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)。劉春平等(deng)[22] 通過采用(yong)(yong)(yong)(yong)腐(fu)(fu)(fu)(fu)蝕(shi)電(dian)(dian)化(hua)學(xue)方法,研究了(le)在(zai)采出水中(zhong)(zhong)由 SRB 繁殖產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de) S2-對(dui)(dui)(dui)(dui)碳(tan)(tan)(tan)鋼(gang)(gang)(gang)的(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)行(xing)為,結果發(fa)現(xian)少量(liang)的(de)(de)(de) S2- 對(dui)(dui)(dui)(dui)碳(tan)(tan)(tan)鋼(gang)(gang)(gang)的(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)有(you)(you)抑(yi)制作(zuo)用(yong)(yong)(yong)(yong), 但并沒有(you)(you)區分(fen) SRB 自(zi)身(shen)產(chan)(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de) S2-與(yu)直接(jie)添(tian)加的(de)(de)(de)S2-對(dui)(dui)(dui)(dui)碳(tan)(tan)(tan)鋼(gang)(gang)(gang)腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)作(zuo)用(yong)(yong)(yong)(yong)差異,而(er)且(qie)后續(xu)的(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)產(chan)(chan)物(wu)(wu)(wu)(wu)分(fen)析部分(fen)還(huan)需(xu)作(zuo)進一(yi)步的(de)(de)(de)解釋說明。Qi 等(deng)[23]通過在(zai)循(xun)環冷卻水系統(tong)中(zhong)(zhong)添(tian)加不同化(hua)學(xue)試劑研究了(le) SRB 在(zai) 316L 不銹鋼(gang)(gang)(gang)表(biao)面(mian)(mian)的(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)特(te)性和(he)腐(fu)(fu)(fu)(fu)蝕(shi)行(xing)為,結果發(fa)現(xian) SRB 生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)能增強鋼(gang)(gang)(gang)表(biao)面(mian)(mian)鈍(dun)化(hua)膜(mo)的(de)(de)(de)保護(hu)性,從(cong)而(er)延緩了(le)腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)發(fa)生(sheng)(sheng)(sheng)(sheng)(sheng)。郭章偉(wei)等(deng)[18]還(huan)指(zhi)出微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)膜(mo)抑(yi)制腐(fu)(fu)(fu)(fu)蝕(shi)的(de)(de)(de)三種主(zhu)要機制:(1)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)通過呼吸作(zuo)用(yong)(yong)(yong)(yong)對(dui)(dui)(dui)(dui)氧(yang)氣進行(xing)消耗;(2)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)在(zai)基體(ti)材料(liao)表(biao)面(mian)(mian)形成(cheng)有(you)(you)效的(de)(de)(de)保護(hu)層(ceng);(3)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)(wu)(wu)通過自(zi)身(shen)分(fen)泌物(wu)(wu)(wu)(wu)對(dui)(dui)(dui)(dui)腐(fu)(fu)(fu)(fu)蝕(shi)起到抑(yi)制作(zuo)用(yong)(yong)(yong)(yong)。

本文基于SRB引起的(de)(de)典型(xing)鋼材(cai)腐蝕(shi)行為綜(zong)述(shu)了近(jin)年來有關SRB腐蝕(shi)與(yu)防(fang)護方面的(de)(de)研究進展,并介紹了其與(yu)好氧微生物(wu)鐵氧化細菌(IOB)之(zhi)間的(de)(de)協同(tong)(tong)作用。另外,本文還綜(zong)述(shu)了典型(xing)的(de)(de)腐蝕(shi)性陰(yin)離(li)子(Cl-、SO42-)、彈(dan)性應力以及腐蝕(shi)性氣(qi)體 CO2與(yu) SRB 之(zhi)間的(de)(de)協同(tong)(tong)作用,以此來探索 SRB 的(de)(de)腐蝕(shi)機理(li)并采(cai)取相應的(de)(de)防(fang)腐蝕(shi)措施,包括物(wu)理(li)、化學、生物(wu)和陰(yin)極(ji)極(ji)化保護等,為今后有效控制由(you) SRB 引起的(de)(de)金屬材(cai)料腐蝕(shi)提供理(li)論借鑒與(yu)參考。

1 SRB 生(sheng)物膜的腐(fu)蝕過程

1.1 微生物膜的形成過程  

生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)是(shi)一(yi)群聚(ju)集在(zai)一(yi)起并不(bu)可(ke)逆地(di)吸(xi)(xi)附(fu)(fu)(fu)在(zai)界面(mian)(mian)或(huo)(huo)基體表(biao)面(mian)(mian)上的(de)(de)(de)(de)(de)(de)固(gu)著(zhu)態微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)群落,其對(dui)(dui) MIC 行為、菌群形(xing)態等(deng)均有(you)非常重要(yao)的(de)(de)(de)(de)(de)(de)影響(xiang)[24]。黃(huang)燁等(deng)[2, 25]指(zhi)(zhi)出,附(fu)(fu)(fu)著(zhu)在(zai)金(jin)屬(shu)(shu)表(biao)面(mian)(mian)形(xing)成的(de)(de)(de)(de)(de)(de)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)可(ke)以(yi)通過(guo)(guo)四(si)種方式影響(xiang)金(jin)屬(shu)(shu)的(de)(de)(de)(de)(de)(de)腐蝕(shi)(shi)過(guo)(guo)程(cheng):1)影響(xiang)陽極(ji)或(huo)(huo)陰極(ji)變化(hua),進而促進電化(hua)學腐蝕(shi)(shi);2)改變腐蝕(shi)(shi)反應的(de)(de)(de)(de)(de)(de)類型(xing),使腐蝕(shi)(shi)速率加快(kuai);3)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)組織結構的(de)(de)(de)(de)(de)(de)形(xing)成,為生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)創造了有(you)利的(de)(de)(de)(de)(de)(de)腐蝕(shi)(shi)環境;4)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)代謝(xie)產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)的(de)(de)(de)(de)(de)(de)化(hua)合物(wu)(wu), 促進或(huo)(huo)抑(yi)制(zhi)金(jin)屬(shu)(shu)腐蝕(shi)(shi)過(guo)(guo)程(cheng)。楊家東等(deng)[26]指(zhi)(zhi)出,在(zai)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)代謝(xie)的(de)(de)(de)(de)(de)(de)影響(xiang)下(xia),生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)的(de)(de)(de)(de)(de)(de)形(xing)成一(yi)般(ban)會經歷如圖 1 所示六個階段[27, 28]:1)在(zai)有(you)機大分子的(de)(de)(de)(de)(de)(de)吸(xi)(xi)附(fu)(fu)(fu)作用和無機離子的(de)(de)(de)(de)(de)(de)礦化(hua)作用下(xia),厚(hou)度(du)約(yue)為 20-80nm 的(de)(de)(de)(de)(de)(de)膜(mo)(mo)層將在(zai)材(cai)料(liao)表(biao)面(mian)(mian)形(xing)成;2)材(cai)料(liao)基體表(biao)面(mian)(mian)上有(you)浮游(you)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)不(bu)斷移(yi)動(dong);3)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)在(zai)材(cai)料(liao)表(biao)面(mian)(mian)不(bu)斷附(fu)(fu)(fu)著(zhu),并逐漸適應所處的(de)(de)(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)環境;4)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)不(bu)斷生(sheng)(sheng)(sheng)(sheng)(sheng)長(chang),并通過(guo)(guo)自身的(de)(de)(de)(de)(de)(de)代謝(xie)活動(dong)產(chan)生(sheng)(sheng)(sheng)(sheng)(sheng)大量(liang)的(de)(de)(de)(de)(de)(de)代謝(xie)物(wu)(wu);5)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)生(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)的(de)(de)(de)(de)(de)(de)過(guo)(guo)程(cheng)中慢慢會趨于成熟穩(wen)定;6)隨著(zhu)時間的(de)(de)(de)(de)(de)(de)推移(yi),生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)的(de)(de)(de)(de)(de)(de)穩(wen)定性慢慢下(xia)降,而且(qie)在(zai)后(hou)期生(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)過(guo)(guo)程(cheng)中會有(you)部分脫落。由此可(ke)看(kan)出,生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)膜(mo)(mo)是(shi)微(wei)(wei)生(sheng)(sheng)(sheng)(sheng)(sheng)物(wu)(wu)的(de)(de)(de)(de)(de)(de)一(yi)種重要(yao)聚(ju)集生(sheng)(sheng)(sheng)(sheng)(sheng)長(chang)形(xing)式,其在(zai)金(jin)屬(shu)(shu)表(biao)面(mian)(mian)的(de)(de)(de)(de)(de)(de)形(xing)成和發展也是(shi)一(yi)個相對(dui)(dui)復雜的(de)(de)(de)(de)(de)(de)過(guo)(guo)程(cheng)。

硫酸鹽還原菌 SRB 對鋼材腐蝕行為的研究進展.jpg

圖1 生物膜的形成和發展過程[28, 29]

1.2 SRB 生物膜(mo)特性及對(dui)腐(fu)蝕的影響

利(li)用在(zai)碳鋼表(biao)面形成(cheng)(cheng)的(de)(de)(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)物(wu)膜,SRB 自身(shen)可(ke)以(yi)(yi)創造一(yi)個(ge)微型厭氧環境(jing),從而促進(jin)生(sheng)(sheng)(sheng)(sheng)物(wu)膜中(zhong) SRB 的(de)(de)(de)(de)(de)(de)生(sheng)(sheng)(sheng)(sheng)長(chang)并引起碳鋼的(de)(de)(de)(de)(de)(de)腐蝕(shi)[29]。SRB 可(ke)以(yi)(yi)在(zai)厭氧條件(jian)下生(sheng)(sheng)(sheng)(sheng)長(chang),并產生(sheng)(sheng)(sheng)(sheng)大量黏液狀的(de)(de)(de)(de)(de)(de)胞外(wai)(wai)聚(ju)合(he)物(wu)(EPS)。EPS 是微生(sheng)(sheng)(sheng)(sheng)物(wu)膜的(de)(de)(de)(de)(de)(de)主(zhu)要(yao)組成(cheng)(cheng)成(cheng)(cheng)分(fen),它具有(you)(you)很強(qiang)的(de)(de)(de)(de)(de)(de)絡合(he)能力(li),能夠將多(duo)種(zhong)無(wu)機金(jin)屬(shu)離(li)子(zi)固定下來。不僅如此(ci),其還(huan)包括多(duo)聚(ju)糖、蛋(dan)白質和糖脂類(lei)等,微生(sheng)(sheng)(sheng)(sheng)物(wu)產生(sheng)(sheng)(sheng)(sheng)的(de)(de)(de)(de)(de)(de) EPS一(yi)般都(dou)是帶電荷的(de)(de)(de)(de)(de)(de),外(wai)(wai)加電場可(ke)以(yi)(yi)破壞 EPS 的(de)(de)(de)(de)(de)(de)荷電特性[30]。許萍等[31]研究了 EPS 中(zhong)的(de)(de)(de)(de)(de)(de)主(zhu)要(yao)成(cheng)(cheng)分(fen)多(duo)糖和蛋(dan)白質對(dui)金(jin)屬(shu)材料腐蝕(shi)行為(wei)的(de)(de)(de)(de)(de)(de)影響,結(jie)果(guo)發現當(dang)多(duo)糖或蛋(dan)白質的(de)(de)(de)(de)(de)(de)質量濃(nong)度為(wei) 1.0 mg/mL 時,其對(dui)碳鋼有(you)(you)最低(di)的(de)(de)(de)(de)(de)(de)腐蝕(shi)速(su)率(lv)(lv)。有(you)(you)些細菌還(huan)可(ke)以(yi)(yi)在(zai) EPS 的(de)(de)(de)(de)(de)(de)引導下產生(sheng)(sheng)(sheng)(sheng)礦化層(ceng),起到(dao)阻礙腐蝕(shi)介質傳遞從而降低(di)腐蝕(shi)速(su)率(lv)(lv)[18] 。細菌的(de)(de)(de)(de)(de)(de)這種(zhong)能力(li)往往會受(shou)到(dao)環境(jing)中(zhong) pH、金(jin)屬(shu)離(li)子(zi)組成(cheng)(cheng)及其濃(nong)度的(de)(de)(de)(de)(de)(de)影響[32]。也有(you)(you)研究表(biao)明[28, 33],高濃(nong)度的(de)(de)(de)(de)(de)(de) EPS 對(dui) Fe2+具有(you)(you)很強(qiang)的(de)(de)(de)(de)(de)(de)絡合(he)作用,能夠有(you)(you)效的(de)(de)(de)(de)(de)(de)促進(jin)基體材料的(de)(de)(de)(de)(de)(de)陽極溶解,從而促進(jin)碳鋼的(de)(de)(de)(de)(de)(de)腐蝕(shi);低(di)濃(nong)度的(de)(de)(de)(de)(de)(de) EPS 可(ke)以(yi)(yi)通(tong)過(guo)抑(yi)制陰極反應過(guo)程減緩電化學腐蝕(shi)的(de)(de)(de)(de)(de)(de)發生(sheng)(sheng)(sheng)(sheng),以(yi)(yi)此(ci)來控(kong)制碳鋼腐蝕(shi)的(de)(de)(de)(de)(de)(de)發生(sheng)(sheng)(sheng)(sheng)。

1.3 SRB 腐蝕(shi)機理

通過研究金(jin)屬表面(mian)微(wei)生(sheng)物(wu)的數量(liang)及活性(xing)變化、生(sheng)物(wu)膜及代(dai)謝產物(wu)成分(fen)、金(jin)屬腐(fu)(fu)蝕(shi)產物(wu)的結構與晶型以(yi)(yi)(yi)及腐(fu)(fu)蝕(shi)后金(jin)屬基(ji)底的粗(cu)糙度變化等(deng)可(ke)以(yi)(yi)(yi)對金(jin)屬材(cai)料腐(fu)(fu)蝕(shi)機(ji)(ji)理(li)進(jin)行(xing)判斷[5, 34]。典型的 SRB 腐(fu)(fu)蝕(shi)機(ji)(ji)理(li)主要有陰(yin)(yin)極(ji)去極(ji)化機(ji)(ji)理(li)、代(dai)謝產物(wu)腐(fu)(fu)蝕(shi)機(ji)(ji)理(li)、Fe/FeS 微(wei)電(dian)池(chi)機(ji)(ji)理(li)、濃差電(dian)池(chi)機(ji)(ji)理(li)、生(sheng)物(wu)能量(liang)機(ji)(ji)理(li)、直接(jie)和間(jian)接(jie)電(dian)子傳遞機(ji)(ji)理(li)以(yi)(yi)(yi)及排硫桿(gan)菌與 SRB 混合作用腐(fu)(fu)蝕(shi)機(ji)(ji)理(li)等(deng),其中陰(yin)(yin)極(ji)去極(ji)化是目前認可(ke)度最高(gao)的腐(fu)(fu)蝕(shi)機(ji)(ji)理(li)[35]。

(1)陰(yin)(yin)極(ji)去極(ji)化(hua)(hua)機理:SRB 腐蝕(shi)本質是電化(hua)(hua)學腐蝕(shi),其陰(yin)(yin)極(ji)在(zai)厭氧條件下會(hui)發生析(xi)氫(qing)(qing)(qing)反應。在(zai)該反應過(guo)程中,氫(qing)(qing)(qing)離(li)子(zi)得到電子(zi)被還原為(wei)氫(qing)(qing)(qing)原子(zi),然(ran)后這(zhe)些氫(qing)(qing)(qing)原子(zi)在(zai)金(jin)屬表(biao)面(mian)粘附下來,金(jin)屬表(biao)面(mian)的氫(qing)(qing)(qing)原子(zi)會(hui)被 SRB 利用氫(qing)(qing)(qing)化(hua)(hua)酶(mei)去除,從而使腐蝕(shi)發生[3]。

(2)代謝產(chan)物(wu)(wu)腐蝕(shi)機(ji)理:作為典型的碳(tan)鋼腐蝕(shi)機(ji)理之一,SRB 代謝物(wu)(wu)的硫化物(wu)(wu)是其主要來源,也(ye)有研究表明是代謝產(chan)物(wu)(wu)磷(lin)化物(wu)(wu)的作用[36] 。一方面,SRB 對金(jin)屬(shu)的腐蝕(shi)速率與 H2 S濃度有關[28] ;另一方面,SRB 代謝產(chan)生的 S2-與溶液中(zhong)的 Fe2+結(jie)合,還會形成致密或疏松的FeS 膜,影(ying)響腐蝕(shi)過程。

(3)Fe/FeS 微(wei)電(dian)池(chi)(chi)作(zuo)用(yong)機(ji)理(li): SRB 代謝生(sheng)成的(de) S2-在(zai)(zai)與(yu)鐵(tie)的(de)相互作(zuo)用(yong)過程(cheng)中(zhong),形(xing)成的(de) FeS作(zuo)為陰極(ji)并吸附在(zai)(zai)基體表面,并且常(chang)常(chang)與(yu)鐵(tie)陽極(ji)形(xing)成腐(fu)蝕電(dian)池(chi)(chi),在(zai)(zai)微(wei)電(dian)池(chi)(chi)的(de)作(zuo)用(yong)下不斷使(shi)腐(fu)蝕發生(sheng)[36]。

(4)濃差電池機理:當部分(fen)腐蝕產(chan)物覆蓋在金屬(shu)表面時,溶解于(yu)水中(zhong)的(de)(de)氧(yang)氣無法與(yu)金屬(shu)基體進行(xing)接觸,這樣會導致管道上(shang)被沉(chen)積物覆蓋的(de)(de)區(qu)域呈(cheng)現陽極(ji)變(bian)化,形成氧(yang)濃差電池[37],從而使得金屬(shu)表面原有的(de)(de)腐蝕更加嚴(yan)重。

(5)生(sheng)(sheng)(sheng)物(wu)能量機理:腐(fu)蝕(shi)的(de)發(fa)生(sheng)(sheng)(sheng)會伴隨能量釋放,SRB 的(de)腐(fu)蝕(shi)反應(ying)就是一個自發(fa)的(de)放能反應(ying)。研究表(biao)(biao)明當(dang)微(wei)生(sheng)(sheng)(sheng)物(wu)生(sheng)(sheng)(sheng)長處于(yu)(yu)停(ting)滯階(jie)段時(shi),附著在(zai)金屬(shu)表(biao)(biao)面的(de)生(sheng)(sheng)(sheng)物(wu)膜以金屬(shu)為(wei)電(dian)子(zi)供(gong)體,通過腐(fu)蝕(shi)金屬(shu)獲(huo)得(de)生(sheng)(sheng)(sheng)存所需的(de)能量[38]。正是由于(yu)(yu)這一獲(huo)得(de)生(sheng)(sheng)(sheng)存能量的(de)過程,從(cong)而導致(zhi)金屬(shu)材料腐(fu) 蝕(shi)的(de)發(fa)生(sheng)(sheng)(sheng) ,總的(de)反 應(ying)過程可以表(biao)(biao)示(shi)為(wei) :2CH3CHOHCOO+SO4 +H+ →2CH3COO+2CO2+HS+4H2O,4Fe+SO4 +9H+→ HS+4H2O+4Fe2+ 。

(6)直(zhi)接和間(jian)接電(dian)子(zi)傳遞(di)機理:直(zhi)接電(dian)子(zi)傳遞(di)指(zhi)的(de)(de)是(shi)細(xi)菌(jun)通(tong)過(guo)(guo)自身(shen)的(de)(de)導(dao)電(dian)納(na)米線(xian)[39] 或(huo)細(xi)胞(bao)膜上的(de)(de)導(dao)電(dian)蛋白[40]進(jin)行(xing)(xing)電(dian)子(zi)傳遞(di);間(jian)接電(dian)子(zi)傳遞(di)是(shi)指(zhi)細(xi)菌(jun)會(hui)利用自身(shen)分泌的(de)(de)可溶性電(dian)子(zi)載體(ti)進(jin)行(xing)(xing)生長(chang)和代(dai)謝,并且傳遞(di)的(de)(de)金屬電(dian)子(zi)主要是(shi)通(tong)過(guo)(guo)細(xi)胞(bao)膜表面的(de)(de)細(xi)胞(bao)色(se)素(su) C 蛋白來進(jin)行(xing)(xing)轉移[41] 。

(7)與排硫桿菌(jun)混合作(zuo)用腐蝕機理:硫氧化(hua)細菌(jun)(SOB)屬于(yu)耗氧菌(jun),它(ta)是一種典型(xing)的

排硫(liu)桿(gan)菌(jun),其中的硫(liu)代謝生(sheng)化過程為:2H2+2O2→H2S2+O3+H2O,5S2 2O3 +4O2 +H2O→5SO4 2+H2SO4+4S,2S+3O2+2H2O→2H2SO4;而 SRB 的硫(liu)代謝生(sheng)化過程為:SO4 +8H→S2-+4H2O,二者可以(yi)形成共生(sheng)細菌(jun),從而共同加速腐蝕的發生(sheng)。


2 SRB 腐(fu)蝕中的(de)協同(tong)作用(yong)

在自然(ran)環境中,微生(sheng)物大部分都是共生(sheng)的,它們往(wang)往(wang)會(hui)協(xie)(xie)作(zuo)(zuo)建立一個微生(sheng)態系統。厭氧(yang)型(xing)SRB和典(dian)型(xing)好氧(yang)微生(sheng)物IOB就可以(yi)協(xie)(xie)同加速工(gong)程材料的腐蝕。除了(le)與IOB之間的協(xie)(xie)同作(zuo)(zuo),SRB 還會(hui)與其他因素產生(sheng)協(xie)(xie)同作(zuo)(zuo)用,例如腐蝕性(xing)陰離子(zi)(Cl-/SO42-)、彈性(xing)應力以(yi)及(ji) CO2等(deng)。

2.1 SRB 與 IOB 的協同作用(yong)

鐵(tie)(tie)氧(yang)化細菌(jun)(jun)是一(yi)(yi)種典(dian)型(xing)好氧(yang)菌(jun)(jun),只要(yao)(yao)在有(you)一(yi)(yi)部分(fen)溶解的(de)(de)(de)(de)流動水中,就(jiu)可(ke)(ke)(ke)以(yi)不斷生(sheng)長。該細菌(jun)(jun)以(yi)碳(tan)(tan)(tan)酸(suan)鹽(yan)為碳(tan)(tan)(tan)源,通(tong)過(guo)反(fan)應產(chan)生(sheng)能量和(he)(he)鐵(tie)(tie)以(yi)維持其能量代謝(xie)。IOB 還可(ke)(ke)(ke)以(yi)通(tong)過(guo)有(you)氧(yang)呼吸降(jiang)解大分(fen)子有(you)機(ji)物,從而(er)產(chan)生(sheng)富含 Fe 的(de)(de)(de)(de)厭(yan)氧(yang)環境(jing),為厭(yan)氧(yang)的(de)(de)(de)(de) SRB 創(chuang)造合(he)適的(de)(de)(de)(de)生(sheng)長環境(jing),加氣(qi)體速碳(tan)(tan)(tan)鋼管(guan)道的(de)(de)(de)(de)腐(fu)蝕或(huo)者促進(jin) SRB 對基體材料(liao)的(de)(de)(de)(de)腐(fu)蝕。研(yan)究(jiu)發現[36],IOB 可(ke)(ke)(ke)以(yi)將 Fe2+氧(yang)化成(cheng) Fe3+并生(sheng)成(cheng) Fe(OH)3,從而(er)在金屬(shu)表(biao)(biao)面(mian)產(chan)生(sheng)氧(yang)濃差(cha)電池,引起局部腐(fu)蝕,從中獲(huo)得能量。Liu等(deng)[42]研(yan)究(jiu)發現,在 SRB 和(he)(he) IOB 共存條件(jian)下,二(er)者對試樣(yang)的(de)(de)(de)(de)點蝕有(you)協(xie)同作(zuo)用(yong),碳(tan)(tan)(tan)鋼試樣(yang)表(biao)(biao)面(mian)會產(chan)生(sheng)更為嚴重的(de)(de)(de)(de)點蝕,并且在碳(tan)(tan)(tan)鋼表(biao)(biao)面(mian)形(xing)成(cheng)疏(shu)松多孔的(de)(de)(de)(de)生(sheng)物膜。孫(sun)福洋等(deng)[43] 研(yan)究(jiu)了(le)土壤模擬(ni)溶液中 SRB 和(he)(he) IOB 對 X100 管(guan)線鋼腐(fu)蝕行為的(de)(de)(de)(de)影響,結果(guo)表(biao)(biao)明(ming)(ming)兩種細菌(jun)(jun)協(xie)同加劇了(le) X100 管(guan)線鋼的(de)(de)(de)(de)全面(mian)腐(fu)蝕,腐(fu)蝕產(chan)物主(zhu)要(yao)(yao)為 FeS 和(he)(he) Fe2O3。以(yi)上(shang)研(yan)究(jiu)表(biao)(biao)明(ming)(ming)作(zuo)為典(dian)型(xing)的(de)(de)(de)(de)厭(yan)氧(yang)菌(jun)(jun)和(he)(he)好氧(yang)菌(jun)(jun),SRB和(he)(he)IOB對鋼鐵(tie)(tie)材料(liao)協(xie)同腐(fu)蝕作(zuo)用(yong)的(de)(de)(de)(de)研(yan)究(jiu)取得了(le)很多成(cheng)果(guo),隨著現代分(fen)析技術(shu)的(de)(de)(de)(de)不斷發展,可(ke)(ke)(ke)以(yi)進(jin)一(yi)(yi)步從微觀上(shang)闡(chan)明(ming)(ming)二(er)者的(de)(de)(de)(de)協(xie)同作(zuo)用(yong)機(ji)理(li)。

2.2 SRB 與 Cl‐和 SO42‐的協同(tong)作用

當(dang)(dang)(dang)一些(xie)陰離子與(yu) SRB 共(gong)同(tong)存在時(shi),陰離子會(hui)改變 SRB 的(de)(de)(de)(de)(de)活(huo)性,進而(er)影響金屬材料的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)行為(wei)(wei)[7]。鄭美露[44]采用電化學測量方法分析了(le)土壤(rang)模擬(ni)溶液(ye)中(zhong)的(de)(de)(de)(de)(de)陰離子 SO42-和Cl-對 X70 鋼(gang)(gang)SRB 腐蝕(shi)(shi)(shi)行為(wei)(wei),結(jie)果(guo)表(biao)(biao)明當(dang)(dang)(dang) SO42-的(de)(de)(de)(de)(de)濃度增加時(shi),SRB對 X70 鋼(gang)(gang)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)速(su)率(lv)會(hui)先增大后減(jian)小;而(er)隨(sui)著介質中(zhong) Cl-含(han)量的(de)(de)(de)(de)(de)增加,X70 鋼(gang)(gang)表(biao)(biao)面(mian)的(de)(de)(de)(de)(de) SRB 腐蝕(shi)(shi)(shi)速(su)率(lv)先減(jian)小后增大。辛(xin)征等(deng)[45] 研究了(le)316L 不銹鋼(gang)(gang)表(biao)(biao)面(mian)微生(sheng)物在不同(tong)濃度的(de)(de)(de)(de)(de) Cl-作(zuo)用下(xia)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)行為(wei)(wei),結(jie)果(guo)發現(xian)當(dang)(dang)(dang) Cl-濃度較(jiao)低時(shi),SRB 具(ju)有(you)較(jiao)強的(de)(de)(de)(de)(de)生(sheng)長活(huo)性且表(biao)(biao)面(mian)生(sheng)物膜疏松多(duo)孔,表(biao)(biao)明此時(shi) 316L 不銹鋼(gang)(gang)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)速(su)率(lv)相對較(jiao)快。張倩(qian)等(deng)[46]研究了(le) SRB 在不同(tong)濃度的(de)(de)(de)(de)(de) Cl-溶液(ye)中(zhong)對 Q235 鋼(gang)(gang)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)行為(wei)(wei),結(jie)果(guo)表(biao)(biao)明當(dang)(dang)(dang)溶液(ye)中(zhong)Cl-含(han)量低于 50g/L 時(shi),隨(sui)著 Cl-含(han)量增加,會(hui)促進 SRB 對 Q235 鋼(gang)(gang)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)(shi)。孟章進等(deng)[47] 發現(xian)SO42- 在一定(ding)程度上會(hui)影響 SRB 的(de)(de)(de)(de)(de)生(sheng)長活(huo)性,當(dang)(dang)(dang) SO42-濃度為(wei)(wei) 1000 mg/L 時(shi),SRB 數(shu)量最多(duo)且活(huo)性最強;但當(dang)(dang)(dang) SO4 濃度達(da)到一定(ding)值(zhi)時(shi),SRB 的(de)(de)(de)(de)(de)生(sheng)長速(su)率(lv)會(hui)趨于穩(wen)定(ding)。研究還發現(xian),SO42-參與(yu) SRB 的(de)(de)(de)(de)(de)代謝活(huo)動時(shi),作(zuo)為(wei)(wei) SRB 的(de)(de)(de)(de)(de)電子受(shou)體,其濃度的(de)(de)(de)(de)(de)變化可(ke)以直接(jie)影響 SRB 的(de)(de)(de)(de)(de)生(sheng)長狀(zhuang)態[7] 。

2.3 SRB 與彈性應力的協同(tong)作用(yong)

SRB 和應(ying)(ying)力(li)(li)之間協同(tong)作(zuo)(zuo)用(yong)(yong)可以誘發(fa)或增強(qiang)管(guan)線(xian)鋼(gang)(gang)(gang)腐(fu)(fu)蝕(shi)(shi)開裂,研(yan)(yan)究(jiu)管(guan)線(xian)鋼(gang)(gang)(gang)在 SRB 和外(wai)(wai)應(ying)(ying)力(li)(li)共同(tong)作(zuo)(zuo)用(yong)(yong)下(xia)的微裂紋萌生(sheng)(sheng)過程(cheng),對(dui)于 SRB 腐(fu)(fu)蝕(shi)(shi)開裂機理的研(yan)(yan)究(jiu)具有(you)(you)重(zhong)要意(yi)義[48] 。王丹等(deng)[49]研(yan)(yan)究(jiu)發(fa)現,X80 鋼(gang)(gang)(gang)在土壤模(mo)擬溶液中的應(ying)(ying)力(li)(li)腐(fu)(fu)蝕(shi)(shi)開裂機制為陽(yang)極(ji)(ji)溶解;與(yu)(yu)沒(mei)有(you)(you)細菌的環境相比,SRB 的存在會(hui)(hui)促進 X80 鋼(gang)(gang)(gang)的陽(yang)極(ji)(ji)溶解,從(cong)而引(yin)發(fa)金(jin)屬點(dian)(dian)蝕(shi)(shi)的發(fa)生(sheng)(sheng)。Wu 等(deng)[50]研(yan)(yan)究(jiu)了(le)(le) SRB與(yu)(yu)彈性應(ying)(ying)力(li)(li)對(dui) X80 鋼(gang)(gang)(gang)腐(fu)(fu)蝕(shi)(shi)的協同(tong)作(zuo)(zuo)用(yong)(yong),結果(guo)表明(ming)二者都能使得鋼(gang)(gang)(gang)材的腐(fu)(fu)蝕(shi)(shi)程(cheng)度(du)有(you)(you)所增加,并且共同(tong)對(dui) X80 鋼(gang)(gang)(gang)的腐(fu)(fu)蝕(shi)(shi)起促進作(zuo)(zuo)用(yong)(yong)。此外(wai)(wai),SRB 的活性引(yin)起了(le)(le)凹坑的萌生(sheng)(sheng),外(wai)(wai)加的彈性應(ying)(ying)力(li)(li)繼續(xu)保持(chi)并促進了(le)(le)凹坑的生(sheng)(sheng)長,SRB 的活性和外(wai)(wai)加的彈性應(ying)(ying)力(li)(li)在初(chu)始點(dian)(dian)蝕(shi)(shi)的底(di)部會(hui)(hui)引(yin)起微小(xiao)的二次點(dian)(dian)蝕(shi)(shi)。吳(wu)堂清等(deng)[48] 研(yan)(yan)究(jiu)了(le)(le)管(guan)線(xian)鋼(gang)(gang)(gang)在彈性應(ying)(ying)力(li)(li)作(zuo)(zuo)用(yong)(yong)下(xia)的微生(sheng)(sheng)物致(zhi)裂行為,結果(guo)表明(ming) SRB的生(sheng)(sheng)理活性改(gai)變了(le)(le)腐(fu)(fu)蝕(shi)(shi)產物的結構,導致(zhi)管(guan)線(xian)鋼(gang)(gang)(gang)局部腐(fu)(fu)蝕(shi)(shi)敏感性提高。

2.4 SRB 與 CO2的(de)協同作用

近年來,有(you)關(guan)鋼(gang)材(cai)在(zai) CO2和 SRB 共(gong)存條件(jian)下(xia)(xia)的(de)腐(fu)(fu)(fu)蝕(shi)(shi)行(xing)為(wei)(wei)的(de)研究也(ye)有(you)報道,二者會通過(guo)協(xie)同作用共(gong)同促進金(jin)屬材(cai)料的(de)腐(fu)(fu)(fu)蝕(shi)(shi)[12]。劉(liu)宏(hong)偉等[51]研究了(le)(le)十(shi)二胺緩蝕(shi)(shi)劑在(zai)飽(bao)和 CO2和SRB 共(gong)存條件(jian)下(xia)(xia)對20#鋼(gang)的(de)緩蝕(shi)(shi)行(xing)為(wei)(wei),結果(guo)(guo)表(biao)(biao)明在(zai)該實驗條件(jian)下(xia)(xia)試樣以(yi)均勻腐(fu)(fu)(fu)蝕(shi)(shi)為(wei)(wei)主,局(ju)部會出現明顯的(de)點蝕(shi)(shi)。陳旭等[52] 研究了(le)(le)在(zai)含(han) CO2的(de)近中性(xing)(xing)(xing)溶液中 SRB 對 X70 鋼(gang)的(de)腐(fu)(fu)(fu)蝕(shi)(shi)行(xing)為(wei)(wei),結果(guo)(guo)發現隨著CO2濃度不斷增加,SRB 和 CO2會共(gong)同促進金(jin)屬表(biao)(biao)面(mian)點蝕(shi)(shi)的(de)進行(xing),且(qie) X70 鋼(gang)在(zai)近中性(xing)(xing)(xing) pH 值菌液中的(de)表(biao)(biao)面(mian)膜(mo)層(ceng)致密性(xing)(xing)(xing)變差。劉(liu)鳳蘭[53] 開展了(le)(le)在(zai)含(han)有(you) CO2工(gong)況條件(jian)下(xia)(xia)的(de)注(zhu)(zhu)(zhu)水系(xi)(xi)統(tong)腐(fu)(fu)(fu)蝕(shi)(shi)規律的(de)研究,結果(guo)(guo)發現 SRB 與 CO2協(xie)同作用加劇了(le)(le)注(zhu)(zhu)(zhu)水系(xi)(xi)統(tong)腐(fu)(fu)(fu)蝕(shi)(shi)程度,而且(qie)二者也(ye)是(shi)注(zhu)(zhu)(zhu)水系(xi)(xi)統(tong)腐(fu)(fu)(fu)蝕(shi)(shi)結垢的(de)主要影響因素(su)。

3 SRB 腐(fu)蝕的控制方法

3.1 物理手段

物(wu)(wu)理手(shou)段主(zhu)要(yao)是通(tong)過一些物(wu)(wu)理方法例如利(li)用(yong)(yong)(yong)靜磁場(chang)(chang)作用(yong)(yong)(yong)、超聲(sheng)波(bo)(bo)處理[54]、紫(zi)外線照射以(yi)及通(tong)過改變介質(zhi)環境(jing)(jing)來減少 SRB 生(sheng)長(chang)(chang)(chang)所(suo)必需的(de)(de)(de)(de)(de)(de)(de)營養元素(su)從(cong)而控(kong)(kong)制(zhi)(zhi)微(wei)生(sheng)物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕。靜磁場(chang)(chang)可(ke)以(yi)抑(yi)制(zhi)(zhi)生(sheng)物(wu)(wu)膜下(xia)(xia)微(wei)生(sheng)物(wu)(wu)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕,即利(li)用(yong)(yong)(yong)磁場(chang)(chang)作用(yong)(yong)(yong)影(ying)(ying)響(xiang) SRB 的(de)(de)(de)(de)(de)(de)(de)分裂和(he)生(sheng)物(wu)(wu)酶(mei)的(de)(de)(de)(de)(de)(de)(de)活(huo)性[3]。Chen 等[55, 56]研(yan)(yan)究了靜態磁場(chang)(chang)對(dui)(dui) SRB 微(wei)生(sheng)物(wu)(wu)腐(fu)(fu)蝕的(de)(de)(de)(de)(de)(de)(de)影(ying)(ying)響(xiang),研(yan)(yan)究發(fa)現 SRB 的(de)(de)(de)(de)(de)(de)(de)固著數量(liang)在(zai) 200 mT 的(de)(de)(de)(de)(de)(de)(de)靜磁場(chang)(chang)下(xia)(xia)會有所(suo)減少,且該磁場(chang)(chang)條件(jian)(jian)下(xia)(xia)會促進 SRB 生(sheng)物(wu)(wu)膜的(de)(de)(de)(de)(de)(de)(de)分散,形成的(de)(de)(de)(de)(de)(de)(de)較致密腐(fu)(fu)蝕產物(wu)(wu)膜會抑(yi)制(zhi)(zhi) SRB 的(de)(de)(de)(de)(de)(de)(de)生(sheng)長(chang)(chang)(chang)繁(fan)殖。李克(ke)娟等[57]研(yan)(yan)究了磁場(chang)(chang)條件(jian)(jian)下(xia)(xia) SRB 對(dui)(dui) Q235 鋼腐(fu)(fu)蝕行(xing)為的(de)(de)(de)(de)(de)(de)(de)影(ying)(ying)響(xiang),研(yan)(yan)究發(fa)現 Q235 鋼表面生(sheng)物(wu)(wu)膜均勻致密,在(zai)磁場(chang)(chang)作用(yong)(yong)(yong)下(xia)(xia)與金屬表面結合更加緊(jin)密,表明磁場(chang)(chang)作用(yong)(yong)(yong)能有效(xiao)地抑(yi)制(zhi)(zhi) SRB 對(dui)(dui)Q235 鋼的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕。當超聲(sheng)波(bo)(bo)達到 90 kHz/s 以(yi)上(shang)的(de)(de)(de)(de)(de)(de)(de)頻(pin)率(lv)時,可(ke)以(yi)震蕩(dang)細(xi)菌的(de)(de)(de)(de)(de)(de)(de)組織結構(gou),從(cong)而對(dui)(dui) SRB 本身造成破壞以(yi)控(kong)(kong)制(zhi)(zhi)對(dui)(dui)材料(liao)的(de)(de)(de)(de)(de)(de)(de)腐(fu)(fu)蝕。紫(zi)外線具有殺滅細(xi)菌的(de)(de)(de)(de)(de)(de)(de)作用(yong)(yong)(yong),紫(zi)外線波(bo)(bo)長(chang)(chang)(chang)一般在(zai) 210~313 nm 內(nei)就會有很強的(de)(de)(de)(de)(de)(de)(de)輻(fu)射效(xiao)應(ying)[58],這(zhe)個范圍完全(quan)可(ke)以(yi)進行(xing)滅殺 SRB。辛征[59]研(yan)(yan)究了不同的(de)(de)(de)(de)(de)(de)(de)環境(jing)(jing)因素(su)對(dui)(dui) SRB 生(sheng)長(chang)(chang)(chang)代謝(xie)的(de)(de)(de)(de)(de)(de)(de)影(ying)(ying)響(xiang),結果發(fa)現 SRB 在(zai) pH 值(zhi)為 5.5~7.5的(de)(de)(de)(de)(de)(de)(de)環境(jing)(jing)中(zhong)和(he) 40℃左右(you)的(de)(de)(de)(de)(de)(de)(de)條件(jian)(jian)下(xia)(xia)均可(ke)以(yi)大量(liang)生(sheng)長(chang)(chang)(chang)繁(fan)殖,故可(ke)以(yi)通(tong)過調整(zheng)腐(fu)(fu)蝕介質(zhi)的(de)(de)(de)(de)(de)(de)(de) pH 值(zhi)大小(xiao)以(yi)及通(tong)過升高或降低(di)溫度來抑(yi)制(zhi)(zhi) SRB 的(de)(de)(de)(de)(de)(de)(de)生(sheng)長(chang)(chang)(chang)。


3.2 化學手(shou)段

化學手段主要(yao)是通過使用(yong)一(yi)些殺菌劑(ji)、緩蝕(shi)劑(ji)等(deng)化學試(shi)劑(ji)來控制微生物的生長(chang)或(huo)者(zhe)在金

屬材料(liao)表(biao)(biao)面(mian)(mian)鍍上耐蝕性(xing)涂(tu)層來改變基體(ti)(ti)材料(liao)表(biao)(biao)面(mian)(mian)特性(xing)以此控制(zhi)微生物(wu)對金屬材料(liao)的(de)腐蝕破壞(huai)。常(chang)用的(de)殺(sha)菌(jun)劑(ji)可(ke)分為(wei)氧(yang)(yang)化(hua)型(xing)(xing)和非(fei)氧(yang)(yang)化(hua)型(xing)(xing)兩種[35, 60],氧(yang)(yang)化(hua)型(xing)(xing)主要有氯(lv)氣,二氧(yang)(yang)化(hua)氯(lv),臭(chou)氧(yang)(yang);非(fei)氧(yang)(yang)化(hua)型(xing)(xing)主要有戊二醛,異(yi)噻唑啉酮,季銨鹽,四(si)羥甲基硫,酸(suan)磷。許萍等(deng)[19]指出,某些微生物(wu)可(ke)分泌殺(sha)菌(jun)劑(ji),不(bu)僅能(neng)夠減少(shao)金屬表(biao)(biao)面(mian)(mian)的(de)電子受體(ti)(ti),還能(neng)阻礙(ai)陰極去極化(hua)過程從而(er)起到抑制(zhi)金屬腐蝕的(de)作用。劉(liu)宏偉等(deng)[61]研究了(le)污(wu)水介質中加入(ru)殺(sha)菌(jun)劑(ji)前后 SRB 的(de)菌(jun)株(zhu)數(shu)量,實(shi)驗(yan)結果表(biao)(biao)明,SRB 的(de)數(shu)量在殺(sha)菌(jun)劑(ji)添(tian)加前后從 2.5×103 減少(shao)到了(le) 1.2 個/mL,表(biao)(biao)明SRB 的(de)腐(fu)蝕(shi)(shi)(shi)(shi)破壞在(zai)殺(sha)(sha)菌劑(ji)(ji)(ji)(ji)作用下得(de)到(dao)了(le)抑制(zhi)(zhi)。研(yan)究還(huan)發現[37],大量的(de)(de)(de)(de)(de)(de)殺(sha)(sha)菌劑(ji)(ji)(ji)(ji)由于其(qi)(qi)自身毒性(xing)會對周圍環(huan)(huan)(huan)境造(zao)成(cheng)新(xin)的(de)(de)(de)(de)(de)(de)污染(ran),而且 SRB 常(chang)受(shou)到(dao)介質環(huan)(huan)(huan)境中其(qi)(qi)他微生物產生的(de)(de)(de)(de)(de)(de)多糖(tang)保護,使(shi)其(qi)(qi)殺(sha)(sha)菌效(xiao)果變差。因此(ci)開發環(huan)(huan)(huan)境友好型(xing)、適合現場(chang)實際(ji)需(xu)要的(de)(de)(de)(de)(de)(de)新(xin)型(xing)殺(sha)(sha)菌劑(ji)(ji)(ji)(ji)備(bei)受(shou)關注(zhu)。添加(jia)(jia)緩蝕(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)(ji)也是控制(zhi)(zhi)金屬(shu)腐(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)(de)(de)有(you)(you)效(xiao)手段,因其(qi)(qi)具有(you)(you)成(cheng)本低(di)、使(shi)用方便、見(jian)效(xiao)快等(deng)優點,在(zai)石油(you)化工行業中得(de)到(dao)了(le)廣(guang)泛的(de)(de)(de)(de)(de)(de)應(ying)用[62]。王貴等(deng)[63]通(tong)過采用 7 種(zhong)緩蝕(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)(ji)對油(you)田采出水中碳(tan)鋼腐(fu)蝕(shi)(shi)(shi)(shi)失重進行評價(jia),實驗結果最后表(biao)明隨著(zhu)緩蝕(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)(ji)質量濃度的(de)(de)(de)(de)(de)(de)增加(jia)(jia),緩蝕(shi)(shi)(shi)(shi)率也不斷提(ti)高。SRB 廣(guang)泛存在(zai)于油(you)氣(qi)管(guan)道(dao)中,它可(ke)通(tong)過自身的(de)(de)(de)(de)(de)(de)代謝(xie)活動影響緩蝕(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)(ji)膜層的(de)(de)(de)(de)(de)(de)完整性(xing)[36]。研(yan)究表(biao)明,在(zai)碳(tan)鋼材(cai)料表(biao)面(mian)(mian)覆(fu)蓋一(yi)層防(fang)護性(xing)涂(tu)層不僅能(neng)夠(gou)使(shi)基體表(biao)面(mian)(mian)不易被細(xi)菌附著(zhu),同時也具有(you)(you)殺(sha)(sha)菌防(fang)護的(de)(de)(de)(de)(de)(de)作用 [26]。目前(qian)油(you)氣(qi)管(guan)道(dao)多為碳(tan)鋼材(cai)質,易引起(qi) SRB 的(de)(de)(de)(de)(de)(de)腐(fu)蝕(shi)(shi)(shi)(shi),涂(tu)層保護是一(yi)種(zhong)有(you)(you)效(xiao)的(de)(de)(de)(de)(de)(de)防(fang)腐(fu)蝕(shi)(shi)(shi)(shi)手段,如(ru)在(zai)金屬(shu)表(biao)面(mian)(mian)電鍍鉻(ge)鋅、涂(tu)覆(fu)環(huan)(huan)(huan)氧(yang)樹脂及聚(ju)乙烯等(deng)都可(ke)以(yi)使(shi)腐(fu)蝕(shi)(shi)(shi)(shi)得(de)到(dao)控制(zhi)(zhi)。不僅如(ru)此(ci),為了(le)提(ti)高油(you)氣(qi)管(guan)道(dao)的(de)(de)(de)(de)(de)(de)耐腐(fu)蝕(shi)(shi)(shi)(shi)性(xing)能(neng),還(huan)可(ke)以(yi)在(zai)管(guan)道(dao)材(cai)料上施加(jia)(jia)一(yi)層鈦或形成(cheng)鈦合金,以(yi)防(fang)止 SRB引起(qi)的(de)(de)(de)(de)(de)(de)腐(fu)蝕(shi)(shi)(shi)(shi)。


3.3 生(sheng)物手段

實驗結(jie)果(guo)表(biao)(biao)明,SRB 的(de)數(shu)量在殺(sha)(sha)菌劑(ji)(ji)(ji)添加前后從 2.5×103 減少到(dao)了(le)(le) 1.2 個/mL,表(biao)(biao)明SRB 的(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)破壞在殺(sha)(sha)菌劑(ji)(ji)(ji)作用(yong)下得到(dao)了(le)(le)抑制(zhi)。研究還(huan)(huan)發現[37],大(da)量的(de)殺(sha)(sha)菌劑(ji)(ji)(ji)由于其(qi)自身(shen)(shen)毒性(xing)會對周圍環(huan)境造成(cheng)新的(de)污(wu)染,而且 SRB 常受到(dao)介質環(huan)境中(zhong)(zhong)其(qi)他微生物產(chan)生的(de)多(duo)糖保護,使其(qi)殺(sha)(sha)菌效(xiao)果(guo)變差。因此開發環(huan)境友好型、適合現場實際需(xu)要(yao)的(de)新型殺(sha)(sha)菌劑(ji)(ji)(ji)備受關注。添加緩蝕(shi)(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)也是控(kong)制(zhi)金屬腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)的(de)有(you)效(xiao)手(shou)(shou)段,因其(qi)具有(you)成(cheng)本(ben)低、使用(yong)方便、見效(xiao)快等優(you)點,在石(shi)油化工行業(ye)中(zhong)(zhong)得到(dao)了(le)(le)廣(guang)泛的(de)應用(yong)[62]。王貴(gui)等[63]通過采用(yong) 7 種緩蝕(shi)(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)對油田(tian)采出水中(zhong)(zhong)碳鋼腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)失重進行評價(jia),實驗結(jie)果(guo)最(zui)后表(biao)(biao)明隨著(zhu)緩蝕(shi)(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)質量濃度的(de)增(zeng)加,緩蝕(shi)(shi)(shi)(shi)(shi)率也不斷提高(gao)。SRB 廣(guang)泛存在于油氣(qi)(qi)管(guan)(guan)道中(zhong)(zhong),它可(ke)通過自身(shen)(shen)的(de)代謝活動影響緩蝕(shi)(shi)(shi)(shi)(shi)劑(ji)(ji)(ji)膜層(ceng)(ceng)(ceng)的(de)完整(zheng)性(xing)[36]。研究表(biao)(biao)明,在碳鋼材(cai)料表(biao)(biao)面(mian)覆蓋(gai)一(yi)層(ceng)(ceng)(ceng)防護性(xing)涂層(ceng)(ceng)(ceng)不僅能夠使基體(ti)表(biao)(biao)面(mian)不易被(bei)細菌附著(zhu),同時(shi)也具有(you)殺(sha)(sha)菌防護的(de)作用(yong) [26]。目前油氣(qi)(qi)管(guan)(guan)道多(duo)為(wei)碳鋼材(cai)質,易引起 SRB 的(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),涂層(ceng)(ceng)(ceng)保護是一(yi)種有(you)效(xiao)的(de)防腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)手(shou)(shou)段,如在金屬表(biao)(biao)面(mian)電鍍(du)鉻(ge)鋅、涂覆環(huan)氧樹脂及聚乙烯等都可(ke)以使腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)得到(dao)控(kong)制(zhi)。不僅如此,為(wei)了(le)(le)提高(gao)油氣(qi)(qi)管(guan)(guan)道的(de)耐腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)性(xing)能,還(huan)(huan)可(ke)以在管(guan)(guan)道材(cai)料上施加一(yi)層(ceng)(ceng)(ceng)鈦或形成(cheng)鈦合金,以防止(zhi) SRB引起的(de)腐(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)。

3.4 陰極極化保護手(shou)段

陰(yin)極保(bao)(bao)護(hu)(hu)方(fang)(fang)法(fa)(fa)通(tong)常(chang)用(yong)(yong)于防(fang)(fang)止(zhi)厭(yan)氧微(wei)生(sheng)(sheng)物(wu)(wu)(wu)對(dui)碳鋼(gang)的(de)(de)(de)(de)腐蝕(shi),其不僅經濟(ji)實用(yong)(yong),而(er)且(qie)是(shi)一種無(wu)毒、無(wu)污染(ran)的(de)(de)(de)(de)腐蝕(shi)防(fang)(fang)護(hu)(hu)方(fang)(fang)法(fa)(fa),符合當前(qian)綠色環保(bao)(bao)的(de)(de)(de)(de)發展趨勢[36]。丁清苗(miao)等[66]通(tong)過(guo)表(biao)(biao)面觀察及電化(hua)學方(fang)(fang)法(fa)(fa)研(yan)(yan)究了(le) X80 鋼(gang)在含(han)(han)有(you)SRB 的(de)(de)(de)(de)海(hai)水溶液中陰(yin)極保(bao)(bao)護(hu)(hu)準則(ze)的(de)(de)(de)(de)適用(yong)(yong)性(xing),結果(guo)發現陰(yin)極保(bao)(bao)護(hu)(hu)對(dui)在含(han)(han)有(you) SRB 的(de)(de)(de)(de)微(wei)生(sheng)(sheng)物(wu)(wu)(wu)海(hai)水中 X80 鋼(gang)表(biao)(biao)面的(de)(de)(de)(de)陰(yin)極極化(hua)起到了(le)一定促進(jin)作(zuo)用(yong)(yong),且(qie)極化(hua)電位的(de)(de)(de)(de)選擇會受(shou)到極化(hua)時間的(de)(de)(de)(de)影響。李雨等[67]研(yan)(yan)究了(le) FTO 導(dao)電玻璃的(de)(de)(de)(de)恒電位極化(hua),結果(guo)表(biao)(biao)明陰(yin)極極化(hua)作(zuo)用(yong)(yong)能(neng)抑(yi)(yi)制(zhi) SRB 等細菌與(yu)樣品(pin)表(biao)(biao)面生(sheng)(sheng)物(wu)(wu)(wu)膜接觸,且(qie)其抑(yi)(yi)制(zhi)作(zuo)用(yong)(yong)與(yu)表(biao)(biao)面鈣沉積(ji)無(wu)關。在實際海(hai)洋工程應用(yong)(yong)中,通(tong)常(chang)利用(yong)(yong)陰(yin)極極化(hua)保(bao)(bao)護(hu)(hu)方(fang)(fang)法(fa)(fa)來阻礙 SRB 對(dui)碳鋼(gang)材(cai)料(liao)(liao)的(de)(de)(de)(de)腐蝕(shi),而(er)且(qie)抑(yi)(yi)制(zhi)效(xiao)果(guo)非常(chang)顯(xian)著。陰(yin)極極化(hua)作(zuo)為一種綠色經濟(ji)的(de)(de)(de)(de)防(fang)(fang)腐蝕(shi)手段,可以抑(yi)(yi)制(zhi)生(sheng)(sheng)物(wu)(wu)(wu)的(de)(de)(de)(de)附著與(yu)生(sheng)(sheng)長,但由于材(cai)料(liao)(liao)方(fang)(fang)面的(de)(de)(de)(de)差異性(xing),其對(dui) SRB 吸附的(de)(de)(de)(de)抑(yi)(yi)制(zhi)機制(zhi)還有(you)待進(jin)一步的(de)(de)(de)(de)研(yan)(yan)究。

3.5 其他防腐(fu)蝕手(shou)段

除(chu)了以(yi)(yi)(yi)上(shang)提到的(de)(de)(de)常見的(de)(de)(de) SRB 腐(fu)蝕控(kong)制(zhi)手段外,還有一些新(xin)的(de)(de)(de)微生物防(fang)(fang)腐(fu)蝕思路被越來(lai)越多(duo)的(de)(de)(de)研究者所(suo)提出。例如(ru),SRB 生物膜分泌(mi)的(de)(de)(de) EPS 防(fang)(fang)腐(fu)蝕研究就(jiu)引起了人們的(de)(de)(de)關注,EPS 在(zai)鋼鐵材料表面(mian)形成致(zhi)密鈍化(hua)保護層后,可以(yi)(yi)(yi)防(fang)(fang)止(zhi)氧氣等(deng)(deng)(deng)陰極去極化(hua)劑(ji)到達金屬表面(mian)以(yi)(yi)(yi)阻止(zhi)電(dian)子傳遞(di)[19],從而(er)防(fang)(fang)止(zhi)腐(fu)蝕的(de)(de)(de)發生。另外,通(tong)過(guo)改(gai)變 SRB 的(de)(de)(de)生長環境來(lai)控(kong)制(zhi)其(qi)正常的(de)(de)(de)生長繁殖(zhi)也(ye)能達到防(fang)(fang)腐(fu)的(de)(de)(de)效果,例如(ru)可以(yi)(yi)(yi)調節溫度(du)、pH 值和鹽(yan)濃度(du)等(deng)(deng)(deng)抑(yi)(yi)制(zhi) SRB 的(de)(de)(de)生長。在(zai)循環水(shui)體系(xi)中,通(tong)過(guo)對水(shui)源(yuan)的(de)(de)(de)防(fang)(fang)污、除(chu)垢以(yi)(yi)(yi)及添加適量的(de)(de)(de)抗菌元素[68]等(deng)(deng)(deng)能夠減少細菌的(de)(de)(de)來(lai)源(yuan),對冷卻(que)塔遮(zhe)光、防(fang)(fang)塵(chen)等(deng)(deng)(deng)也(ye)可抑(yi)(yi)制(zhi)細菌繁殖(zhi)。


4 總結(jie)與展(zhan)望

本文重點綜述了SRB 對典型鋼材腐蝕研(yan)究現(xian)狀、SRB 與一些(xie)腐蝕影響因素之間的協同作

用(yong)(yong)及目前(qian)普(pu)遍采用(yong)(yong)的(de)(de)(de)(de)(de)MIC 控(kong)制(zhi)方(fang)法。近年來,對SRB 腐蝕(shi)(shi)行為的(de)(de)(de)(de)(de)研(yan)(yan)(yan)究(jiu)(jiu)主要(yao)集中(zhong)在有(you)機酸(suan)、H2S和(he)(he)FeS 等與(yu)生(sheng)物(wu)(wu)膜之(zhi)間(jian)的(de)(de)(de)(de)(de)腐蝕(shi)(shi)機理以(yi)及SRB 微生(sheng)物(wu)(wu)細胞與(yu)鐵之(zhi)間(jian)的(de)(de)(de)(de)(de)直接電子相互作(zuo)用(yong)(yong)方(fang)面(mian)。隨著對SRB 研(yan)(yan)(yan)究(jiu)(jiu)的(de)(de)(de)(de)(de)不(bu)斷深入(ru),越來越多的(de)(de)(de)(de)(de)研(yan)(yan)(yan)究(jiu)(jiu)人員發現(xian)SRB 生(sheng)物(wu)(wu)膜不(bu)僅(jin)能加速腐蝕(shi)(shi),而且在一(yi)定條件下還(huan)能抑(yi)制(zhi)腐蝕(shi)(shi)的(de)(de)(de)(de)(de)發生(sheng),其抑(yi)制(zhi)效果遠遠優于某些防(fang)腐涂層(ceng),因此(ci)可(ke)以(yi)利用(yong)(yong)SRB這一(yi)生(sheng)理特性來控(kong)制(zhi)腐蝕(shi)(shi)以(yi)減少(shao)對金屬材料造成(cheng)的(de)(de)(de)(de)(de)經濟損失(shi)。對于相關研(yan)(yan)(yan)究(jiu)(jiu)學者(zhe)而言,應當結(jie)合現(xian)代科(ke)技(ji)技(ji)術不(bu)斷研(yan)(yan)(yan)究(jiu)(jiu)和(he)(he)分(fen)析(xi)SRB 腐蝕(shi)(shi)行為特點,從而更深入(ru)了(le)解SRB 的(de)(de)(de)(de)(de)腐蝕(shi)(shi)機理。同(tong)時,還(huan)應意(yi)識(shi)到SRB 往往會與(yu)其他腐蝕(shi)(shi)介質(zhi)中(zhong)的(de)(de)(de)(de)(de)影響因素之(zhi)間(jian)發生(sheng)協(xie)同(tong)作(zuo)用(yong)(yong),因此(ci)在研(yan)(yan)(yan)究(jiu)(jiu)過(guo)程中(zhong)采取行之(zhi)有(you)效的(de)(de)(de)(de)(de)方(fang)法來合理評價SRB 的(de)(de)(de)(de)(de)作(zuo)用(yong)(yong)。

近年來,有(you)關(guan)海(hai)(hai)(hai)洋(yang)方(fang)面(mian)的(de)研(yan)究(jiu)不斷成為(wei)熱點(dian)。眾所周知,我國是海(hai)(hai)(hai)洋(yang)大國,但不是海(hai)(hai)(hai)洋(yang)強國,海(hai)(hai)(hai)洋(yang)腐(fu)(fu)(fu)蝕(shi)方(fang)面(mian)面(mian)臨(lin)著(zhu)(zhu)許多關(guan)鍵科學(xue)(xue)問(wen)題(ti)有(you)待解決(jue)。值得(de)一提的(de)是,解決(jue)海(hai)(hai)(hai)洋(yang)環(huan)境中的(de)材(cai)料腐(fu)(fu)(fu)蝕(shi)問(wen)題(ti)是國家重(zhong)大需求,未來有(you)關(guan)海(hai)(hai)(hai)洋(yang)方(fang)面(mian)的(de)微生(sheng)物腐(fu)(fu)(fu)蝕(shi)防護的(de)研(yan)究(jiu)越(yue)來越(yue)趨向(xiang)于綠(lv)色環(huan)保,更多的(de)是要(yao)在傳(chuan)統(tong)防護方(fang)法的(de)基礎上(shang)著(zhu)(zhu)重(zhong)研(yan)究(jiu)生(sheng)物防治(zhi)方(fang)法。在今(jin)后微生(sheng)物腐(fu)(fu)(fu)蝕(shi)研(yan)究(jiu)中,有(you)關(guan)MIC 的(de)作用機(ji)理及(ji)其防護對策依舊是研(yan)究(jiu)的(de)重(zhong)點(dian),有(you)必(bi)要(yao)加(jia)強物種多樣(yang)性的(de)研(yan)究(jiu)。此外,通過光(guang)譜電(dian)化(hua)學(xue)(xue)、分子生(sheng)物學(xue)(xue)和微區電(dian)化(hua)學(xue)(xue)腐(fu)(fu)(fu)蝕(shi)觀察,研(yan)究(jiu)有(you)關(guan)SRB 菌株的(de)呼吸代(dai)謝機(ji)制和直接電(dian)子傳(chuan)遞途徑,對今(jin)后微生(sheng)物腐(fu)(fu)(fu)蝕(shi)行為(wei)的(de)研(yan)究(jiu)和探(tan)索具有(you)重(zhong)要(yao)意義。


參考文獻

[1] Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J.

Chin. Soc. Corros. Prot., 2018, 38(1): 1-9

(管方, 翟(zhai)曉凡, 段繼周等. 陰極(ji)極(ji)化對(dui)硫(liu)酸鹽還(huan)原菌腐蝕影(ying)響的(de)研究(jiu)進(jin)展(zhan) [J]. 中國腐蝕與(yu)防護(hu)學報(bao), 2018, 38(1): 1-9)

[2] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China., 2017, 44(7): 1699

(黃燁, 劉(liu)雙江, 姜成(cheng)英. 微生(sheng)(sheng)物(wu)腐蝕及腐蝕機(ji)理研究進展 [J]. 微生(sheng)(sheng)物(wu)學通報(bao), 2017, 44(7): 1699-1713)[3] Xiong F P, Wang J L, Fadhil A A, et al. Research Progress of Sulfate-reducing Bacteria Induced SCC [J]. Corros. Sci. Prot. Technol.,

2018, 30(3): 213-221

(熊(xiong)福平, 王軍磊, Fadhil A A等. 硫(liu)酸鹽還原菌誘導應(ying)力腐蝕(shi)開裂(lie)研究進展 [J]. 腐蝕(shi)科學(xue)與防護(hu)技(ji)術, 2018, 30(3): 213-221)

[4] Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527(7579): 441-442

[5] Xu P, Ren H Y, Wang C Z, et al. Research Progress on Mixture Microbial Corrosion and Analytical Method on Metal Surface [J]. Surf

Technol., 2019, 48(1): 216-224

(許萍, 任恒陽, 汪(wang)長征等(deng). 金(jin)屬表(biao)面混合微生物腐(fu)蝕及分析方法研究進展(zhan) [J]. 表(biao)面技術(shu), 2019, 48(1): 216-224)

[6] Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel

and modern weathering structural steel [J]. Corros Sci, 2016, 113

[7] Wu M, Guo Z W, Xie F, et al. Research progress of corrosion behavior of pipeline steel under the action of anion and sulfate reducing

bacteria [J]. Mater Rep, 2018, 32(19): 158-166

(吳(wu)明, 郭紫薇, 謝飛等. 陰(yin)離(li)子(zi)和硫酸鹽還原菌作用下管(guan)線鋼腐(fu)蝕行為的研究(jiu)進展 [J]. 材料導報(bao), 2018, 32(19): 158-166)

[8] Deng S Y, Qiu Q H. Current situation and Prospect of research on biological corrosion of steel in China [J]. Surf Technol., 2019, 48(8):

239

(鄧紹云, 邱清華. 我國鋼材生物腐蝕(shi)研究現狀與展望(wang) [J]. 表面(mian)技術, 2019, 048(008): 239-246)

[9] Liu J, Fan H B, Xu H P, et al. Electrochemical corrosion behavior of carbon steel in microbial media [J]. J. Electrochem, 2016, 8(2):

186

(劉靖, 范(fan)洪(hong)波, 徐(xu)海平等. 碳(tan)鋼(gang)在微(wei)生物介質中的腐蝕電化學行為(wei) [J]. 電化學, 2016, 8(02): 186-190)

[10] Ma L, Xie J F, Xiong M X, et al. Effect of sulfate reducing bacteria on Pitting Behavior of carbon steel in H2S environment [J].

Corros. Prot, 2018, 039(007): 555-561

(馬磊, 謝(xie)俊(jun)峰, 熊(xiong)茂縣等. H2S 環(huan)境中硫酸鹽(yan)還原菌對碳鋼點蝕行(xing)為(wei)的影響 [J]. 腐蝕與防護, 2018, 039(007): 555-561)

[11] Zheng M L. Corrosion behavior of sulfate reducing bacteria on carbon steel [D]. Tianjin: Civil Aviation University of China, 2015

(鄭美露. 硫酸鹽還原菌對(dui)碳鋼腐蝕行為(wei)的研究 [D]. 天津: 中國民航大(da)學(xue),2015)

[12] Fan M M, Liu H, Dong Z H. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water [J].

Mater. Corros, 2013, 64(3): 242-246

[13] Ge L, Wu M, Xie F, et al. Effect of growth process of sulfate reducing bacteria on Corrosion Behavior of X70 Steel [J]. Mater for

Mecha Eng, 2016, 40(8): 94-98

(葛嵐(lan), 吳明, 謝(xie)飛(fei)等. 硫酸鹽還原菌(jun)的(de)生長(chang)過程對 X70 鋼(gang)腐(fu)蝕行為的(de)影(ying)響 [J]. 機(ji)械工程材料, 2016, 40(8): 94-98)

[14] Zhai F T, Li H H, Xu C M. Corrosion Behavior of 2507 Duplex Stainless Steel in Cooling Water with Different SRB Content[J]. Hot

Working Technology, 2016 (18): 105-108

[15] Ohashi K, Kobayashi R, Stott J F D, et al.. Marine crevice corrosion of stainless steel alloys under biofilmed and sterile conditions

[C]. NACE International, 2016,(June 14).

[16] Lv M Y, Li Z X, Du M, et al. Formation, function and evolution of biofilm in microbial corrosion [J]. Surf Technol., 2019, 11: 59-68

(呂美英, 李振(zhen)欣(xin), 杜敏等. 微(wei)生(sheng)(sheng)物(wu)腐蝕中生(sheng)(sheng)物(wu)膜的生(sheng)(sheng)成(cheng)、作用與(yu)演變 [J]. 表(biao)面(mian)技術, 2019, 11: 59-68)

[17] Videla H A, Herrera L K. Understanding microbial

Biodeterioration & Biodegradation, 2009, 63(7): 896-900

inhibition of corrosion. A comprehensive overview [J].

International

[18] Guo Z W, Guo N, Liu T, et al. Research progress in mechanism of microbial corrosion inhibition and biomineralization [J]. Surf

Technol., 2018, 47(2): 144-150

(郭章偉, 郭娜, 劉濤等(deng). 微生(sheng)物抑制腐蝕機(ji)理(li)及生(sheng)物礦化機(ji)理(li)研究進(jin)展 [J]. 表面技(ji)術, 2018, 47(2): 144-150)

[19] Xu P, Zhai Y J, Wang J, et al. Understanding the research progress of biofilm microbial corrosion protection from a new perspective

[J]. Corros. Sci. Prot. Technol., 2016, 28(4): 356-360

(許萍, 翟羽(yu)佳, 王(wang)婧(jing)等. 從新的視角理解生(sheng)物(wu)膜(mo)--微生(sheng)物(wu)防腐蝕(shi)研究進展 [J]. 腐蝕(shi)科學與防護技術, 2016, 28(4): 356-360)

[20] Yuan S J, Liang B, Zhao Y, et al. Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater

Containing Inorganic Sulphide and Sulphate-reducing Bacteria [J]. Corros Sci, 2013, 74: 353-366.[21] Wu Y N. Study on antibacterial and anticorrosive properties of composite coating based on cuprous oxide [D]. Wu Han: Huazhong

University of Science and Technology, 2016

(吳(wu)亞(ya)楠. 基于氧化亞(ya)銅的復合(he)涂層的抗菌防腐性能探(tan)究 [D]. 武漢(han): 華中科技大學, 2016)

[22] Liu C P, Han X. Effect of S2- in produced water of CO2 bearing Oilfield on Corrosion Behavior of carbon steel [J]. Industrial Water

Treatment, 2019, 039(005): 57-60

(劉春平, 韓霞. 含CO2油田采出水(shui)中 S2-對碳鋼腐蝕(shi)行(xing)為的影響 [J]. 工業水(shui)處(chu)理, 2019, 039(005): 57-60)

[23] Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L

surface in circulating cooling water system [J]. Frontiers of Environmental ence & Engineering, 2017, 11(2): 143-156.

[24] Shu Y, Yan M C, Wei Y H, et al. Characteristics and corrosion behavior of SRB biofilm on X80 Pipeline Steel [J]. Acta Metall Sin,

2018, 54(10): 68-76

(舒韻, 閆茂(mao)成, 魏英華(hua)等. X80 管線鋼(gang)表面 SRB生物膜特征(zheng)及腐蝕行(xing)為 [J]. 金屬學(xue)報, 2018, 54(10): 68-76)

[25] Xiang L B, Zhang J C, Liu X R, et al. Microbiological Influenced Corrosion and Microbiological Influenced Corrosion

Inhibition-Overview and a Case Application in Oilfield Produced Water [J]. Corros. Sci. Prot. Technol., 2019, 31(1)

(向龍斌, 張(zhang)吉昌(chang), 劉心蕊等. 微生物(wu)腐蝕(shi)(shi)與(yu)采出水的微生物(wu)防(fang)腐蝕(shi)(shi)-回顧與(yu)應用實例 [J]. 腐蝕(shi)(shi)科(ke)學(xue)與(yu)防(fang)護技術, 2019, 31(1))

[26] Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion and protection of metal materials [J]. Euipment

Environmental Engineering, 2015, 12(1): 59-65

(楊家(jia)東(dong), 許(xu)鳳玲, 侯(hou)健等. 金屬(shu)材料的微(wei)生物腐蝕與防護研究(jiu)進展(zhan) [J]. 裝備(bei)環(huan)境(jing)工程(cheng), 2015, 12(1): 59-65)

[27] Enning D, Garrelfs J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem [J]. Appl Environ Microbiol,

2014, 80(4): 1226.

[28] Liu H W, Xu D K, Wu Y N, et al. Research Progress in Corrosion of Steels Induced by Sulfate Reducing Bacteria [J]. Corros. Sci.

Prot. Technol, 2015, 27(5): 409-418

(劉宏(hong)偉, 徐大可, 吳亞楠等(deng). 微(wei)生(sheng)物(wu)(wu)生(sheng)物(wu)(wu)膜下(xia)的鋼鐵材料(liao)腐蝕(shi)研究進展(zhan) [J]. 腐蝕(shi)科(ke)學與(yu)防護技術, 2015, 27(5): 409-418)

[29] Liu H W, Liu H F. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria [J]. J. Chin. Soc. Corros. Prot., 2017,

(3): 3

(劉宏偉, 劉宏芳(fang). 鐵氧化(hua)菌引起的(de)鋼鐵材料腐蝕研究(jiu)進展 [J]. 中國腐蝕與防護學(xue)報, 2017, (03): 3-14)

[30] Blenkinsopp S A, Khoury A E, Costerton J W. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa

biofilms [J]. Appl Environ Microbiol, 1992, 58(11): 3770-3773

[31] Xu P, Si S, Zhang Y J, et al. Effect of EPS on Anti-corrosion Behavior of Metals [J]. Corros. Prot, 2016, 037(005): 384-387, 429

(許萍, 司帥, 張雅君(jun)等(deng). 微生(sheng)物胞外聚合物(EPS)對金屬耐(nai)蝕性的影響 [J]. 腐蝕與(yu)防護, 2016, 037(005): 384-387, 429)

[32] Boukhalfa H , Reilly S D , Michalczyk R, et al. Iron(III) Coordination Properties of a Pyoverdin Siderophore Produced by

Pseudomonas putida ATCC 33015 [J]. Inorgan Chemi, 2006, 45(14): 5607-5616

[33] Dong Z H, Tao L, Hong F L. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J].

Biofouling, 2011, 27(5): 487-495

[34] Shi X B, Xu D K, Yan M C, et al. Study on microbial corrosion behavior of new pipeline steel containing Cu [J]. Acta Metall Sin,

2017, 53(2): 153-162

(史顯波, 徐(xu)大可(ke), 閆茂(mao)成(cheng)等. 新型含 Cu 管線鋼的微生物腐(fu)蝕行為研究 [J]. 金屬(shu)學報, 2017, 53(2): 153-162)

[35] Zhang L, Han J L, Zhu M J, et al. Corrosion and protection of sulfate reducing bacteria to metals in marine environment [J]. China

Water Trans, 2017, 17(2): 93-96

(張力, 韓金陸, 祝孟潔(jie)等. 海洋環境中硫酸(suan)鹽還原菌(jun)對金屬的腐(fu)蝕及防護 [J]. 中國水運(yun)(下半月), 2017, 17(2): 93-96)

[36] Li X, Du M. Research Progress on the Effect of Cathodic Polarization on Microbiologically Influenced Corrosion [J]. Corros. Sci.

Prot. Technol., 2017, 29(5): 561-566

(李霞, 杜(du)敏. 陰(yin)極極化對微(wei)生物(wu)腐(fu)蝕的影響研究(jiu)進展 [J]. 腐(fu)蝕科學與防(fang)護技術, 2017, 29(5): 561-566)

[37] Cai F. Effect of sulfate reducing bacteria on casing corrosion and its control technology [J]. Building mater. decoration, 2019, (21)

(蔡峰(feng). 硫(liu)酸(suan)鹽(yan)還原菌對油(you)田套管(guan)腐蝕的影響(xiang)及控制技術(shu) [J]. 建材與裝飾, 2019, (21))[38] Xia J, Xu D K, Nan L, et al. Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of

Bioelectrochemistry and Bio-energetics [J]. Chinese Journal of Materials Research, 2016, 30(03):161-170.

(夏進, 徐(xu)大可, 南黎(li)等. 從生(sheng)物(wu)能量學(xue)(xue)和生(sheng)物(wu)電化學(xue)(xue)角(jiao)度研(yan)究(jiu)金屬微(wei)生(sheng)物(wu)腐蝕的機理[J]. 材料研(yan)究(jiu)學(xue)(xue)報, 2016,

30(03):161-170)

[39] Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural

sulfatereducing bacterium [J]. Geobiology, 2012, 10: 150-162

iron in interstratified illite-smectite minerals by a

[40] Liu D, Yang C T, Zhou E Z, et al. Progress in Microbiologically Influenced Corrosion of Metallic Materials in Marine Environment

[J]. Surf Technol., 2019 (7): 166-174.

(劉丹, 楊純田, 周恩澤等. 海洋用金屬材料的(de)微生物(wu)腐蝕研究(jiu)進(jin)展[J]. 表(biao)面技(ji)術, 2019 (7):166-174)

[41] Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive

biogenic mineral crust [J]. Environmental Microbiology, 2012, 14(7): 1772-1787.

[42] Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing

bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100(NOV.): 484-495

[43] Sun F Y, Yang X, Cao B. Effect of SRB+IOB on Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Yingtan Soil

[J]. Mater Rep, 2019(S1)

(孫(sun)福洋, 楊旭, 曹博. SRB+IOB對X100 管線鋼在鷹潭(tan)土壤模擬溶液中腐蝕行為的影(ying)響 [J]. 材料導(dao)報, 2019(S1))

[44] Zheng M L. Effect of anions in soil on microbial corrosion of X70 Steel [J]. Shandong Industrial Technology, 2015, (7): 224

(鄭美露.土(tu)壤中陰離(li)子對 X70 鋼微(wei)生物(wu)腐蝕的影響 [J]. 山(shan)東(dong)工業技術(shu),2015, (7): 224)

[45] Xin Z, Yu Y, Wang Y C, et al. Effect of Cl- concentration on Corrosion Behavior of 316L stainless steel in sulfate reducing bacteria

system [J]. Mater. Prot., 2014, 47(5):57-60

(辛征,于勇,王元春等.Cl-濃度對(dui)硫酸(suan)鹽還原菌(jun)體系中(zhong) 316L 不銹鋼腐(fu)蝕行為的影(ying)響 [J].材料保(bao)護, 2014, 47(5): 57-60)

[46] Zhang Q, Zhao X D, Li Q C, et al. Effect of Cl- concentration on Corrosion Behavior of Q235 steel in solution containing sulfate

reducing bacteria[J]. Mechanical Engineer, 2017(6): 8-10

(張倩, 趙曉(xiao)棟, 李慶(qing)超(chao)等. Cl-濃(nong)度對(dui)Q235 鋼在(zai)含有硫酸鹽還(huan)原菌的(de)溶(rong)液中腐蝕行為的(de)影響 [J]. 機械工程(cheng)師, 2017(6): 8-10)

[47] Meng Z J, Wu W L, Qi J H, et al. Analysis of the influence of wellbore environmental factors on SRB growth and corrosion [J].

Petrochemi industry appli, 2015, 34(1): 13-15

(孟章進, 吳偉林(lin), 祁建杭(hang)等. 井筒環境因素對 SRB 生長及腐蝕(shi)影響分析 [J]. 石油化工應用, 2015, 34(1): 13-15)

[48] Wu T Q, Zhou S F, Wang X M, et al. Bacteria Assisted Cracking of X80 Pipeline Steel under the Actions of Elastic and Plastic

Stresses [J]. Surf Technol., 2019(7).

(吳堂清(qing), 周(zhou)昭芬, 王鑫(xin)銘(ming)等. 彈(dan)塑性應力作用下 X80 管線鋼的菌(jun)致開裂行為 [J]. 表面技術, 2019(7))

[49] Wang D, Xie F, Wu M, et al. Effect of sulfate reducing bacteria on stress corrosion cracking behavior of X80 steel [J]. T Mater

Heat Treat, 2016, 37(5): 198-203

(王丹, 謝飛, 吳明等. 硫酸鹽還原菌對 X80 鋼應力腐蝕開裂(lie)行為(wei)的(de)影響 [J]. 材(cai)料熱(re)處理學報, 2016, 37(5): 198-203)

[50] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil

solution [J]. Corros Sci, 2014, 83(JUN.): 38-47

[51] Liu H W, Zhang F, Wu Y N, et al. Inhibition Behavior of Dodecylamine Inhibitor in Oilfield Produced Water Containing Saturated

CO2 and SRB [J]. Corros. Prot, 2015, 036(002): 137-143

(劉宏(hong)偉(wei), 張帆(fan), 吳亞楠等. 油(you)田產出水(shui)中飽(bao)和 CO2 和 SRB 共存(cun)條(tiao)件下十二胺(an)緩蝕(shi)(shi)劑的(de)緩蝕(shi)(shi)行為 [J]. 腐蝕(shi)(shi)與(yu)防護, 2015,

036(002): 137-143)

[52] Chen X, Gao F J, Song W Q, et al. Effects of CO2 on SRB Influenced Corrosion Behavior of X70 Steel in Near-neutral pH Solution

[J]. Corros. Sci. Prot. Technol., 2017, 029(002): 103-109

(陳旭, 高鳳嬌, 宋武琦, 李鑫,何(he)川. CO2對 X70 鋼(gang)在近中(zhong)性 pH 值溶(rong)液中(zhong)硫酸鹽還原菌腐(fu)蝕行為的影響 [J]. 腐(fu)蝕科學(xue)與(yu)防

護(hu)技術, 2017, 029(002): 103-109)

[53] Liu F L. Analysis of factors influencing corrosion of water injection system in block a of Jilin Oilfield [J]. Petroleum Knowledge,2019, 000(004): 44-45, 47 (劉鳳蘭. 吉林(lin)油田A區塊注水系統腐蝕影(ying)響因素(su)分析 [J]. 石(shi)油知識, 2019, 000(004): 44-45, 47)

[54] Liu L Y, Zhang X M, Li L. Application of ultrasonic sterilization technology in food [J]. Food Science, 2006, 12: 778-780 (劉(liu)麗(li)艷,張(zhang)喜梅,李(li)琳. 超聲(sheng)波(bo)殺菌(jun)技術在食(shi)品中(zhong)的應用(yong) [J]. 食(shi)品科學, 2006, 12: 778-780)

[55] Chen B, Liu H W, Wu Y N, et al. Influence of static magnetic field on microbiologically induced corrosion of Cu-Zn alloy in SRB culture medium [J]. ECS Trans., 2014, 59: 439

[56] Chen B. Formation and corrosion electrochemical behavior of SRB biofilm under static magnetic field [D]. Wu Han: Huazhong University of Science and Technology, 2014

(陳(chen)碧. 靜磁場下 SRB生物膜形成及腐(fu)蝕電化學行(xing)為 [D]. 武漢: 華中科技大學, 2014)

[57] Li K J, Zheng B J, Chen B, et al. Effect of magnetic field on microbiological corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33(6): 463-469 (李(li)克娟, 鄭碧(bi)(bi)娟, 陳碧(bi)(bi)等. 磁場對 Q235 鋼微生(sheng)物腐(fu)蝕(shi)行為的影響 [J]. 中(zhong)國腐(fu)蝕(shi)與防護學(xue)報(bao), 2013, 33(6): 463-469)

[58] Li J J, Liu Y M, Zhang X W, et al. Mechanism of metal corrosion caused by sulfate-reducing bacteria in the reinjection water in oilfields and its prevention and cure [J]. Industrial Water Treatment, 2007, 27(11): 4-7 (李家(jia)俊,劉玉民,張香文等. 油田回(hui)注水中硫酸鹽(yan)還原菌對金屬腐(fu)蝕的機理及(ji)其防治方法 [J]. 工業水處理,2007, 27(11): 4-7)

[59] Xin Z. Effect of environmental factors on Corrosion Behavior of 316L stainless steel in medium containing sulfate reducing bacteria [D]. Yantai: Yantai University, 2014 (辛征. 環境因素(su)對(dui)含硫酸鹽(yan)還原菌介質中 316L 不銹(xiu)鋼腐蝕行(xing)為的影(ying)響(xiang) [D]. 煙臺: 煙臺大學, 2014)

[60] Li Y Q. Present situation and development trend of Bactericides for oilfield production system [J]. Chemical Engineering Design Communications, 2016, 42(6): 21 (李(li)延慶. 油田生產系統用殺菌劑(ji)的現狀及發(fa)展趨勢 [J]. 化工設計通訊, 2016, 42(6): 21)

[61] Liu H W, Liu H F, Qin S, et al. Investigation of Biomineralization Induced by Sulfate Reducing Bacteria in Sewage Gathering Pipelines in Oilfield [J]. Corros. Sci. Prot. Technol., 2015, 27(1): 7-12 (劉宏偉, 劉宏芳, 秦(qin)雙等. 集輸管(guan)線硫酸鹽還(huan)原菌誘導生物(wu)礦(kuang)化作(zuo)用調查 [J]. 腐(fu)蝕科學與防護技術(shu), 2015, 27(1): 7-12)

[62] Kan T T, Dong B H, Zhang H, et al. Selection and performance evaluation of corrosion inhibitor for CFD Oilfield [J]. Appl Chemi Industry, 2014 (闞濤濤, 董(dong)寶輝, 張環等(deng). CFD油田(tian)緩蝕(shi)劑的篩選與(yu)性能評(ping)價 [J]. 應用化工, 2014)

[63] Wang G, Duan L D, Wang H, et al. Selection and performance evaluation of corrosion inhibitor for carbon steel in oilfield produced water [J]. Journal of Yangtze University (Natural Science Edition), 2019, (5) (王(wang)貴, 段立東, 王(wang)歡(huan)等. 油田采出(chu)水中碳鋼(gang)腐(fu)蝕緩蝕劑的(de)篩選(xuan)與性能評價 [J]. 長江大學學報(自然科學版), 2019, (5))

[64] Guo J K, Huang M H, Ma Y L. Corrosion of 304 stainless steel by sulfate reducing bacteria and heterotrophic nitrifying bacteria [J]. Industrial Water Treatment, 2016, 36(12): 70-72 (郭軍科, 黃美(mei)慧, 馬有良. 硫酸鹽還(huan)原菌和(he)異(yi)養硝化菌對 304 不銹鋼腐蝕研(yan)究 [J]. 工業(ye)水處(chu)理, 2016, 36(12): 70-72)

[65] Zong Y, Xie F, Wu M, et al. Research Progress in Influencing Factors of Corrosion by Sulfate-reducing Bacteria and Corresponding Antisepsis Techniques [J]. Surf Technol., 2016, 045(003): 24-30 (宗月, 謝(xie)飛, 吳明等. 硫酸(suan)鹽還(huan)原菌腐蝕影響因素(su)及防(fang)腐技術(shu)的研(yan)究進展(zhan) [J]. 表面(mian)技術(shu), 2016, 045(003): 24-30)

[66] Ding Q M, Fan Y M, Zhang Y F. Applicability of cathodic protection criteria for X80 steel in seawater containing SRB [J]. J Marin Sci, 2016, 34(3): 19-24 (丁清苗(miao), 范玥銘(ming), 張迎芳. X80 鋼在含有(you) SRB的海(hai)水溶液(ye)中陰極保(bao)護準則(ze)適用性(xing) [J]. 海(hai)洋學研究, 2016, 34(3): 19-24)

[67] Li Y. Study on antibacterial mechanism of cathodic polarization [D]. Dalian: Dalian University of Technology, 2013 (李雨. 陰(yin)極(ji)(ji)極(ji)(ji)化的抑菌機理(li)研究 [D]. 大連: 大連理(li)工大學(xue), 2013)

[68] Hong D, Cao G, Qu J, et al. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites[J]. J Mater Sci Technol, 2018, 34(12): 2359-2367.