熱帶海洋大氣環境中EH36船板鋼早期腐蝕行為研究
摘要
在高(gao)濕、高(gao)熱、高(gao)鹽度(du)和強(qiang)輻照的(de)(de)湛江海(hai)洋大氣腐(fu)蝕(shi)試(shi)驗站對(dui)EH36船(chuan)板鋼(gang)進行了(le)(le)(le)15、30、90、180和360 d的(de)(de)暴(bao)(bao)露(lu)(lu)實驗。通(tong)過腐(fu)蝕(shi)失重計算了(le)(le)(le)不同暴(bao)(bao)露(lu)(lu)周期(qi)的(de)(de)腐(fu)蝕(shi)速(su)率(lv),采(cai)用SEM觀察(cha)了(le)(le)(le)銹層(ceng)(ceng)表(biao)面(mian)和截面(mian)的(de)(de)微(wei)觀形貌,采(cai)用X射線(xian)衍射儀(yi)分(fen)(fen)析(xi)了(le)(le)(le)銹層(ceng)(ceng)的(de)(de)組(zu)成(cheng)成(cheng)分(fen)(fen),采(cai)用EDS分(fen)(fen)析(xi)了(le)(le)(le)銹層(ceng)(ceng)中(zhong)的(de)(de)元素分(fen)(fen)布,同時(shi)對(dui)暴(bao)(bao)露(lu)(lu)后(hou)(hou)(hou)的(de)(de)試(shi)樣進行了(le)(le)(le)極化曲線(xian)測(ce)試(shi)。結果表(biao)明:EH36船(chuan)板鋼(gang)的(de)(de)腐(fu)蝕(shi)速(su)率(lv)先增大、后(hou)(hou)(hou)減(jian)小;暴(bao)(bao)露(lu)(lu)360 d后(hou)(hou)(hou),Cr、Ni和Si擴散到銹層(ceng)(ceng)中(zhong),分(fen)(fen)布較(jiao)為均勻,提高(gao)了(le)(le)(le)鋼(gang)的(de)(de)耐腐(fu)蝕(shi)性能;暴(bao)(bao)露(lu)(lu)180和360 d的(de)(de)銹層(ceng)(ceng)中(zhong)均含有γ-FeOOH、β-FeOOH、Fe3O4和α-FeOOH,暴(bao)(bao)露(lu)(lu)360 d的(de)(de)銹層(ceng)(ceng)中(zhong)α-FeOOH較(jiao)多,β-FeOOH較(jiao)少,銹層(ceng)(ceng)中(zhong)α/γ=0.615,尚未形成(cheng)穩定的(de)(de)保護(hu)性銹層(ceng)(ceng)。
關(guan)鍵詞: EH36船板(ban)鋼(gang); 熱帶海洋大(da)氣; 腐蝕(shi); 極化曲線(xian)
進(jin)入21世紀以來,我國(guo)海(hai)洋(yang)(yang)(yang)經濟蓬勃(bo)發展,對(dui)海(hai)洋(yang)(yang)(yang)船(chuan)(chuan)(chuan)舶(bo)(bo)(bo)(bo)的(de)(de)(de)(de)(de)需求(qiu)急劇增加(jia)。遠洋(yang)(yang)(yang)船(chuan)(chuan)(chuan)舶(bo)(bo)(bo)(bo)正向(xiang)大(da)型(xing)(xing)化(hua)(hua)(hua)(hua)和輕(qing)量(liang)化(hua)(hua)(hua)(hua)方向(xiang)發展,因(yin)此對(dui)船(chuan)(chuan)(chuan)體結(jie)構用(yong)(yong)鋼(gang)(gang)(gang)的(de)(de)(de)(de)(de)要(yao)(yao)(yao)求(qiu)也越(yue)來越(yue)高(gao),既要(yao)(yao)(yao)有高(gao)強度(du)、高(gao)韌(ren)(ren)性(xing)(xing)(xing),還(huan)要(yao)(yao)(yao)有良好的(de)(de)(de)(de)(de)焊(han)接加(jia)工(gong)性(xing)(xing)(xing)能。EH36級低(di)溫高(gao)韌(ren)(ren)性(xing)(xing)(xing)船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)主要(yao)(yao)(yao)用(yong)(yong)于(yu)制造大(da)型(xing)(xing)海(hai)洋(yang)(yang)(yang)平臺(tai),大(da)中型(xing)(xing)遠洋(yang)(yang)(yang)船(chuan)(chuan)(chuan)舶(bo)(bo)(bo)(bo)的(de)(de)(de)(de)(de)強力甲板(ban)(ban)、舷(xian)頂列板(ban)(ban)或(huo)圓弧型(xing)(xing)板(ban)(ban)等(deng)船(chuan)(chuan)(chuan)體關鍵部位[1]。船(chuan)(chuan)(chuan)舶(bo)(bo)(bo)(bo)工(gong)作環(huan)境(jing)(jing)十分惡劣,船(chuan)(chuan)(chuan)體外殼(ke)不僅要(yao)(yao)(yao)承(cheng)受(shou)海(hai)水的(de)(de)(de)(de)(de)化(hua)(hua)(hua)(hua)學腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)、電化(hua)(hua)(hua)(hua)學腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)和海(hai)生(sheng)(sheng)物、微(wei)生(sheng)(sheng)物腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi),還(huan)要(yao)(yao)(yao)承(cheng)受(shou)較(jiao)大(da)的(de)(de)(de)(de)(de)風浪沖擊造成的(de)(de)(de)(de)(de)交(jiao)(jiao)變載荷[2]。楊英等(deng)[3]用(yong)(yong)干濕(shi)交(jiao)(jiao)替周期浸(jin)潤(run)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)試(shi)驗研究(jiu)了EH36-NS船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)在(zai)模擬海(hai)洋(yang)(yang)(yang)大(da)氣(qi)環(huan)境(jing)(jing)下的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)行(xing)為(wei)(wei)(wei),結(jie)果(guo)(guo)表(biao)明,EH36-NS船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)在(zai)模擬海(hai)洋(yang)(yang)(yang)大(da)氣(qi)環(huan)境(jing)(jing)下的(de)(de)(de)(de)(de)耐蝕(shi)(shi)(shi)(shi)(shi)性(xing)(xing)(xing)明顯優于(yu)Q235鋼(gang)(gang)(gang),其耐蝕(shi)(shi)(shi)(shi)(shi)性(xing)(xing)(xing)是Q235鋼(gang)(gang)(gang)的(de)(de)(de)(de)(de)1.46倍。唐荻等(deng)[4]用(yong)(yong)干濕(shi)交(jiao)(jiao)替周期浸(jin)潤(run)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)試(shi)驗研究(jiu)了3種自行(xing)設計(ji)(ji)成分的(de)(de)(de)(de)(de)EH36船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)在(zai)海(hai)洋(yang)(yang)(yang)大(da)氣(qi)中的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)行(xing)為(wei)(wei)(wei),研究(jiu)結(jie)果(guo)(guo)表(biao)明,降低(di)C含(han)量(liang)并(bing)提高(gao)Cr含(han)量(liang)有利于(yu)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)銹層的(de)(de)(de)(de)(de)致密(mi)化(hua)(hua)(hua)(hua),腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)產物主要(yao)(yao)(yao)為(wei)(wei)(wei)對(dui)耐蝕(shi)(shi)(shi)(shi)(shi)性(xing)(xing)(xing)有益的(de)(de)(de)(de)(de)α-FeOOH和γ-FeOOH。高(gao)海(hai)亮等(deng)[5]研究(jiu)了自行(xing)設計(ji)(ji)冶煉的(de)(de)(de)(de)(de)Cu-Ni系EH36船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)在(zai)不同pH值的(de)(de)(de)(de)(de)NaCl溶液中的(de)(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)(shi)行(xing)為(wei)(wei)(wei),研究(jiu)結(jie)果(guo)(guo)表(biao)明,其自行(xing)設計(ji)(ji)的(de)(de)(de)(de)(de)Cu-Ni系EH36船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang)在(zai)酸性(xing)(xing)(xing)Cl-環(huan)境(jing)(jing)下對(dui)pH的(de)(de)(de)(de)(de)敏感(gan)度(du)遠低(di)于(yu)傳統(tong)EH36船(chuan)(chuan)(chuan)板(ban)(ban)鋼(gang)(gang)(gang),并(bing)具有優異的(de)(de)(de)(de)(de)抗點(dian)蝕(shi)(shi)(shi)(shi)(shi)性(xing)(xing)(xing)能。
目前對于EH36船(chuan)板(ban)鋼耐蝕(shi)(shi)(shi)性能(neng)的(de)(de)(de)(de)研(yan)究(jiu)尚不充分,對于EH36船(chuan)板(ban)鋼腐蝕(shi)(shi)(shi)的(de)(de)(de)(de)研(yan)究(jiu)多集中(zhong)在(zai)實(shi)(shi)驗室模(mo)擬階(jie)段,EH36船(chuan)板(ban)鋼在(zai)海(hai)洋(yang)大氣(qi)(qi)和(he)(he)實(shi)(shi)海(hai)中(zhong)的(de)(de)(de)(de)腐蝕(shi)(shi)(shi)研(yan)究(jiu)比較(jiao)匱乏。湛江位(wei)于大陸(lu)最南(nan)(nan)端、面向(xiang)南(nan)(nan)海(hai),屬(shu)于熱帶季(ji)風(feng)氣(qi)(qi)候,年(nian)平(ping)均(jun)氣(qi)(qi)溫20 ℃以(yi)上,年(nian)較(jiao)差3~10 ℃,年(nian)平(ping)均(jun)降雨量1300~1800 mm,年(nian)平(ping)均(jun)日照(zhao)時(shi)數(shu)1714.8~2038.2 h,年(nian)平(ping)均(jun)濕度為(wei)88%,表(biao)面潤(run)濕時(shi)間5634 h/a,平(ping)均(jun)Cl-沉積速(su)(su)率為(wei)58.2 mg·m-2·d-1,為(wei)典型的(de)(de)(de)(de)高濕、高鹽(yan)和(he)(he)高輻照(zhao)環境[6,7],是理想的(de)(de)(de)(de)研(yan)究(jiu)金(jin)屬(shu)腐蝕(shi)(shi)(shi)的(de)(de)(de)(de)天然加(jia)速(su)(su)腐蝕(shi)(shi)(shi)試驗場。研(yan)究(jiu)EH36船(chuan)板(ban)鋼在(zai)熱帶海(hai)洋(yang)大氣(qi)(qi)環境中(zhong)早期腐蝕(shi)(shi)(shi)行為(wei)和(he)(he)機理,可為(wei)船(chuan)板(ban)鋼的(de)(de)(de)(de)成分設計(ji)和(he)(he)在(zai)海(hai)洋(yang)環境中(zhong)的(de)(de)(de)(de)應(ying)用提供重要的(de)(de)(de)(de)參考依據(ju)。
1 實驗方法(fa)
實(shi)驗(yan)材料(liao)為(wei)某(mou)船廠生產的EH36船板鋼(gang),化學成(cheng)分(fen) (質量分(fen)數(shu),%) 為(wei):C 0.084,Si 0.281,Mn 1.326,S 0.009,P 0.012,Cr 0.225,Mo 0.0406,Ni 0.372,Al 0.0151,Cu 0.0352,Fe余量。將船板鋼(gang)加工(gong)成(cheng)150 mm×100 mm×3 mm的試樣(yang),樣(yang)品經SiC水磨砂(sha)紙逐級打磨到600#、丙酮(tong)溶液超聲清(qing)洗、去離子水充分(fen)沖(chong)洗、無水乙醇脫(tuo)水和干(gan)燥處理后備用。按GB/T14165-1993[8]在湛江大氣腐(fu)蝕試驗(yan)站進行室外(wai)暴露,時間為(wei)2017年(nian)(nian)12月~2018年(nian)(nian)12月,取樣(yang)周期為(wei)15、30、90、180和360 d。
用(yong)(yong)Nikon D800E數碼相機拍攝(she)暴(bao)(bao)(bao)(bao)曬(shai)樣品(pin)除銹(xiu)(xiu)前后宏(hong)觀形(xing)貌,暴(bao)(bao)(bao)(bao)曬(shai)樣品(pin)除銹(xiu)(xiu)按GB/T 16545-1996[9]規定的(de)方法進行;采用(yong)(yong)AUTOLAB PGSTAT302N電(dian)(dian)化學(xue)工作站測試(shi)帶銹(xiu)(xiu)暴(bao)(bao)(bao)(bao)曬(shai)樣品(pin)的(de)極化曲線,采用(yong)(yong)三電(dian)(dian)極體系,飽和(he)甘汞電(dian)(dian)極為(wei)參比電(dian)(dian)極,2 cm×2 cm鉑片電(dian)(dian)極為(wei)輔助(zhu)電(dian)(dian)極,暴(bao)(bao)(bao)(bao)曬(shai)試(shi)樣為(wei)工作電(dian)(dian)極,其工作面積為(wei)1 cm2,掃描(miao)速率(lv)為(wei)5×10-4 V/s,掃描(miao)范圍 (相對(dui)于開路電(dian)(dian)位) 為(wei)-0.15~0.15 V,測試(shi)溶液(ye)為(wei)3.5% (質量分數) 的(de)NaCl溶液(ye);采用(yong)(yong)X Per MRD型X射線衍射儀(yi) (XRD) 分析暴(bao)(bao)(bao)(bao)曬(shai)樣品(pin)的(de)銹(xiu)(xiu)層成分,采用(yong)(yong)Nova NanoSEM430型掃描(miao)電(dian)(dian)子顯微鏡 (SEM) 及其自(zi)帶的(de)能(neng)譜儀(yi) (EDS) 拍攝(she)暴(bao)(bao)(bao)(bao)曬(shai)試(shi)樣表面和(he)截(jie)面的(de)微觀形(xing)貌,并分析銹(xiu)(xiu)層的(de)元素分布。
2 結果(guo)與(yu)討論
2.1 腐蝕動力學分(fen)析
EH36船板(ban)鋼(gang)暴(bao)(bao)露(lu)不同時(shi)(shi)間后(hou)的(de)腐(fu)蝕速(su)(su)率(lv)如圖1所(suo)示,在整(zheng)個暴(bao)(bao)露(lu)周(zhou)期(qi)內,船板(ban)鋼(gang)腐(fu)蝕速(su)(su)率(lv)先增(zeng)大后(hou)減小(xiao)。暴(bao)(bao)露(lu)時(shi)(shi)間≤180 d時(shi)(shi),腐(fu)蝕速(su)(su)率(lv)隨(sui)暴(bao)(bao)露(lu)時(shi)(shi)間的(de)延長而(er)增(zeng)大;180 d<暴(bao)(bao)露(lu)時(shi)(shi)間≤360 d時(shi)(shi),腐(fu)蝕速(su)(su)率(lv)隨(sui)暴(bao)(bao)露(lu)時(shi)(shi)間的(de)延長而(er)減小(xiao)。暴(bao)(bao)露(lu)180 d時(shi)(shi),船板(ban)鋼(gang)腐(fu)蝕速(su)(su)率(lv)最(zui)大,為0.174 mm·a-1。
圖1 EH36船板(ban)鋼(gang)腐蝕速率隨暴露時間變化的曲線
2.2 腐蝕形貌觀察(cha)
觀察EH36船(chuan)板鋼暴(bao)露不同時間(jian)后的(de)(de)宏(hong)觀腐(fu)蝕形貌 (圖(tu)2) 可知,鐵銹顏色隨暴(bao)露時間(jian)的(de)(de)增加而逐漸加深(shen),從暴(bao)露15 d的(de)(de)淺棕色逐漸轉變為(wei)暴(bao)露360 d的(de)(de)棕褐色。隨著暴(bao)露時間(jian)的(de)(de)延長(chang),試樣(yang)表面腐(fu)蝕產(chan)物越來越多,腐(fu)蝕程度逐漸加深(shen)。
圖2 EH36船板鋼暴露不(bu)同時間后表面宏(hong)觀(guan)形貌
觀察EH36船板(ban)鋼暴露不同時(shi)間后(hou)的(de)微觀腐(fu)(fu)蝕形貌(mao) (圖3) 可(ke)以(yi)看(kan)出(chu),暴露15 d后(hou),EH36船板(ban)鋼表(biao)(biao)面完全被腐(fu)(fu)蝕產(chan)物(wu)覆蓋,隨著腐(fu)(fu)蝕銹(xiu)(xiu)層下腐(fu)(fu)蝕產(chan)物(wu)的(de)累積,銹(xiu)(xiu)層產(chan)生(sheng)了裂(lie)(lie)紋(wen)(wen)。暴露30 d后(hou),銹(xiu)(xiu)層裂(lie)(lie)紋(wen)(wen)快速(su)變(bian)(bian)深、變(bian)(bian)寬,表(biao)(biao)面銹(xiu)(xiu)層變(bian)(bian)厚(hou)并存在破碎區。暴露90 d后(hou),腐(fu)(fu)蝕速(su)率(lv)快速(su)增長階段結束,銹(xiu)(xiu)層裂(lie)(lie)紋(wen)(wen)增多,腐(fu)(fu)蝕速(su)率(lv)緩慢增加。暴露180 d后(hou),銹(xiu)(xiu)層表(biao)(biao)面腐(fu)(fu)產(chan)物(wu)堆積,使寬而深的(de)裂(lie)(lie)紋(wen)(wen)變(bian)(bian)窄、變(bian)(bian)淺,隨后(hou)腐(fu)(fu)蝕速(su)率(lv)開始緩慢降低(di)。
圖3 EH36船板鋼暴(bao)露不同時間后(hou)表面微觀(guan)形貌
圖4為(wei)(wei)EH36船板鋼(gang)暴(bao)露(lu)180和(he)(he)(he)(he)360 d后(hou)銹層(ceng)(ceng)截面形貌和(he)(he)(he)(he)元素分(fen)布(bu)。在(zai)自(zi)然(ran)環境下生成穩定的(de)(de)(de)保護性(xing)銹層(ceng)(ceng)至(zhi)少要3 a以上[10],可以看(kan)出(chu)(chu)暴(bao)露(lu)360 d后(hou)的(de)(de)(de)銹層(ceng)(ceng)中(zhong)尚未出(chu)(chu)現(xian)分(fen)層(ceng)(ceng)現(xian)象。暴(bao)露(lu)180 d后(hou),銹層(ceng)(ceng)最厚處約為(wei)(wei)100 μm,暴(bao)露(lu)360 d后(hou),銹層(ceng)(ceng)厚度增(zeng)加了1.6倍左右,銹層(ceng)(ceng)厚度約為(wei)(wei)260 μm。暴(bao)露(lu)180和(he)(he)(he)(he)360 d后(hou)銹層(ceng)(ceng)中(zhong)O的(de)(de)(de)含量較高(gao)(gao)(gao),其主要成分(fen)為(wei)(wei)Fe的(de)(de)(de)氧化(hua)物。暴(bao)露(lu)180 d后(hou),Cr和(he)(he)(he)(he)Ni主要分(fen)布(bu)在(zai)基(ji)體(ti)中(zhong),Si已(yi)經擴散到(dao)(dao)了銹層(ceng)(ceng)中(zhong),但分(fen)布(bu)不(bu)均(jun)勻。暴(bao)露(lu)360 d后(hou),Cr和(he)(he)(he)(he)Ni已(yi)擴散到(dao)(dao)銹層(ceng)(ceng)中(zhong),并且Cr、Ni和(he)(he)(he)(he)Si在(zai)銹層(ceng)(ceng)中(zhong)分(fen)布(bu)比較均(jun)勻。在(zai)鋼(gang)中(zhong)單獨(du)添(tian)加Cr并不(bu)能顯著提高(gao)(gao)(gao)耐(nai)大(da)氣(qi)腐蝕性(xing)能,但是當Cr與Si匹配加入時(shi),則可大(da)幅度提高(gao)(gao)(gao)其耐(nai)蝕性(xing)能[11]。Ni會使銹層(ceng)(ceng)更加致(zhi)密,使銹層(ceng)(ceng)的(de)(de)(de)離子(zi)選擇性(xing)由(you)陰離子(zi)轉變為(wei)(wei)陽離子(zi)[12]。此外(wai),Ni的(de)(de)(de)存在(zai)可提高(gao)(gao)(gao)銹層(ceng)(ceng)中(zhong)納米級α-FeOOH的(de)(de)(de)比例[13]。
圖4 EH36船板鋼暴露180 d后銹層截(jie)面腐蝕形(xing)貌和(he)元素分布
圖5 EH36船板鋼暴(bao)露360 d后銹層(ceng)截面腐蝕(shi)形(xing)貌和元素分布
2.3 表面成分分析
圖6為(wei)EH36船(chuan)板鋼暴(bao)(bao)露(lu)不同時間后的(de)(de)(de)XRD譜(pu)。暴(bao)(bao)露(lu)15 d后,EH36船(chuan)板鋼銹(xiu)層(ceng)的(de)(de)(de)主要成分為(wei)γ-FeOOH,還(huan)含有(you)(you)少(shao)量(liang)的(de)(de)(de)β-FeOOH和(he)Fe3O4;與(yu)暴(bao)(bao)露(lu)15 d相比,暴(bao)(bao)露(lu)180 d和(he)360 d的(de)(de)(de)銹(xiu)層(ceng)中(zhong)除(chu)了(le)含有(you)(you)γ-FeOOH、β-FeOOH和(he)Fe3O4外,還(huan)有(you)(you)α-FeOOH。Fe的(de)(de)(de)腐(fu)蝕產物的(de)(de)(de)熱(re)力(li)學穩定(ding)性(xing)(xing)順序為(wei):FeO<Fe(OH)2<γ-Fe2O3<Fe3O4<γ-FeOOH<α-FeOOH[11,14,15],即(ji)銹(xiu)層(ceng)中(zhong)最(zui)先生成FeO,隨著腐(fu)蝕的(de)(de)(de)進行,逐(zhu)漸向熱(re)力(li)學穩定(ding)性(xing)(xing)更高(gao)的(de)(de)(de)腐(fu)蝕產物轉(zhuan)(zhuan)變(bian)。β-FeOOH只(zhi)有(you)(you)在(zai)含有(you)(you)Cl-的(de)(de)(de)環境中(zhong)才會生成[16,17],β-FeOOH的(de)(de)(de)晶(jing)體結構有(you)(you)利(li)于Cl-向銹(xiu)層(ceng)中(zhong)擴散,因此會增(zeng)大(da)腐(fu)蝕速(su)率。此外,Cl-會降低β-FeOOH的(de)(de)(de)穩定(ding)性(xing)(xing),使β-FeOOH轉(zhuan)(zhuan)變(bian)為(wei)α-FeOOH和(he)Fe3O4[18]。與(yu)暴(bao)(bao)露(lu)180 d相比,暴(bao)(bao)露(lu)360 d后銹(xiu)層(ceng)中(zhong)α-FeOOH明顯增(zeng)多,而β-FeOOH明顯減少(shao),正是由于β-FeOOH向α-FeOOH轉(zhuan)(zhuan)變(bian)的(de)(de)(de)結果(guo)。銹(xiu)層(ceng)中(zhong)的(de)(de)(de)α-FeOOH具(ju)(ju)有(you)(you)陰離子選擇性(xing)(xing),而Cr置(zhi)換Fe而形成α-CrxFe1-xOOH具(ju)(ju)有(you)(you)陽離子選擇性(xing)(xing),阻礙了(le)Cl-滲透,降低了(le)腐(fu)蝕速(su)率。
圖6 EH36船板鋼暴露(lu)不同時間后的(de)銹層XRD譜
Yamashita等(deng)[19]提出(chu)可(ke)以用(yong)銹(xiu)層(ceng)(ceng)(ceng)中(zhong)α-FeOOH與(yu)γ-FeOOH的比值 (α/γ) 來評價耐候鋼(gang)銹(xiu)層(ceng)(ceng)(ceng)的穩(wen)定性(xing)(xing)。當(dang)α/γ>2.0時,即可(ke)認為(wei)形(xing)成了穩(wen)定的保護(hu)性(xing)(xing)銹(xiu)層(ceng)(ceng)(ceng),即銹(xiu)層(ceng)(ceng)(ceng)中(zhong)α-FeOOH含量越多,銹(xiu)層(ceng)(ceng)(ceng)的穩(wen)定性(xing)(xing)和保護(hu)性(xing)(xing)越好[20]。通過XRD半定量數據計算分(fen)析(xi),暴(bao)(bao)露360 d的銹(xiu)層(ceng)(ceng)(ceng)中(zhong)α/γ=0.615,由此可(ke)見(jian)暴(bao)(bao)露360 d的EH36船板鋼(gang)表面(mian)還未形(xing)成穩(wen)定的保護(hu)性(xing)(xing)銹(xiu)層(ceng)(ceng)(ceng)。
2.4 電化(hua)學(xue)分析(xi)
圖(tu)7和(he)表1分別為EH36船板鋼暴露(lu)不同時間(jian)后的(de)(de)極化曲(qu)線和(he)通過極化曲(qu)線擬合得出的(de)(de)腐(fu)(fu)蝕(shi)(shi)(shi)電位和(he)腐(fu)(fu)蝕(shi)(shi)(shi)電流。可以看出,隨著暴露(lu)時間(jian)的(de)(de)延(yan)長,腐(fu)(fu)蝕(shi)(shi)(shi)速率先增加、后減小。在暴露(lu)前期 (<180 d),Fe的(de)(de)陽(yang)極溶解逐(zhu)漸增強,腐(fu)(fu)蝕(shi)(shi)(shi)電位負移,腐(fu)(fu)蝕(shi)(shi)(shi)電流增大;在暴露(lu)后期 (>180 d),銹層中(zhong)α-FeOOH含(han)量增加,銹層對基體的(de)(de)保護作(zuo)用增強,腐(fu)(fu)蝕(shi)(shi)(shi)電位正(zheng)移,腐(fu)(fu)蝕(shi)(shi)(shi)電流變小。
圖7 EH36船板鋼暴露不同時間后的極化曲線
表(biao)1 EH36船板鋼暴露不同時(shi)間后(hou)的腐蝕(shi)電位和腐蝕(shi)電流
3 結論(lun)
(1) 在(zai)熱帶海洋大(da)氣環境中(zhong),隨著暴露時間的延長,EH36船板鋼的腐蝕(shi)速(su)率先增大(da)后減(jian)小。
(2) 暴露180 d后,EH36船板(ban)鋼(gang)銹(xiu)層(ceng)中Cr和(he)Ni元(yuan)素主要分(fen)布(bu)在基體(ti)中,Si已經擴散到了(le)銹(xiu)層(ceng)中,且(qie)(qie)分(fen)布(bu)不(bu)均勻(yun);暴露360 d后,Cr和(he)Ni擴散到了(le)銹(xiu)層(ceng)中,且(qie)(qie)分(fen)布(bu)較(jiao)為均勻(yun),提(ti)高(gao)了(le)鋼(gang)的耐蝕性提(ti)高(gao),腐蝕速率下(xia)降。
(3) 暴(bao)露(lu)15 d后,銹(xiu)層(ceng)中(zhong)的主要(yao)成分為γ-FeOOH,還含有(you)少(shao)量的β-FeOOH和(he)Fe3O4。暴(bao)露(lu)180和(he)360 d后,銹(xiu)層(ceng)中(zhong)均含有(you)γ-FeOOH、β-FeOOH、α-FeOOH和(he)Fe3O4。暴(bao)露(lu)180 d的銹(xiu)層(ceng)中(zhong)β-FeOOH較(jiao)多而α-FeOOH很(hen)(hen)少(shao),而暴(bao)露(lu)360 d的銹(xiu)層(ceng)中(zhong)α-FeOOH較(jiao)多而β-FeOOH很(hen)(hen)少(shao),這(zhe)是由于(yu)β-FeOOH向α-FeOOH轉變的結果(guo)。暴(bao)露(lu)360 d的EH36船板鋼銹(xiu)層(ceng)中(zhong)α/γ=0.615,即(ji)尚未形成穩定(ding)的保護(hu)性(xing)銹(xiu)層(ceng),EH36船板鋼的腐蝕(shi)速率(lv)仍然較(jiao)大。
(4) 暴露前期 (<180 d),Fe的陽極溶解逐漸增強(qiang),腐(fu)(fu)蝕(shi)電位負(fu)移,腐(fu)(fu)蝕(shi)電流增大;在暴露后期 (>180 d),銹層中α-FeOOH含量增加,銹層對基體的保護作用(yong)增強(qiang),腐(fu)(fu)蝕(shi)電位正移,腐(fu)(fu)蝕(shi)電流變小(xiao)。
參考文獻
[1] Wang J, Li T Z. Development and production of low carbon high strength and toughness EH36 hull plate with TMCP technology [J]. Shandong Metall., 2016, 38(4): 5
[1] (王杰(jie), 李廷芝. 低碳型EH36高(gao)強韌性(xing)船板(ban)鋼開發生產(chan) [J]. 山(shan)東(dong)冶金, 2016, 38(4): 5)
[2] Li Z S. Study on microstructure and property of 360 MPa grade ship plate steel [D]. Ji'nan: Shandong University, 2010
[2] (李貞順. 360 MPa級船板鋼的組織與性(xing)能研究(jiu) [D]. 濟南: 山東大學, 2010)
[3] Yang Y, Fan Y, Zhang W L. Research on corrosion behavior of EH36-NS steel in the simulated marine atmosphere [J]. NISCO Technol. Manag., 2015, (3): 6
[3] (楊英, 范益(yi), 張(zhang)萬(wan)靈(ling). EH36-NS在模擬海(hai)洋大氣環境(jing)下的腐(fu)蝕行(xing)為研究 [J]. 南鋼科技管理, 2015, (3): 6)
[4] Tang D, Zhang M J, Wu H B, et al. Atmospheric corrosion resistance of EH36 ocean platform steel [J]. Corros. Prot., 2012, 33: 558
[4] (唐荻(di), 張明潔, 武(wu)會賓等(deng). EH36級平臺鋼耐(nai)海洋大氣(qi)腐蝕(shi)性能 [J]. 腐蝕(shi)與防護, 2012, 33: 558)
[5] Gao H L, Tang W, Luo D, et al. Corrosion analysis of EH36 corrosion resistant steel for cargo oil tank [J]. Met. Mater. Metall. Eng., 2016, 44(4): 10
[5] (高海亮(liang), 湯偉, 羅登等. 工(gong)業試制油輪(lun)貨(huo)油艙(cang)用耐蝕(shi)鋼EH36的耐蝕(shi)性(xing)分(fen)析 [J]. 金屬材(cai)料(liao)與冶金工(gong)程, 2016, 44(4): 10)
[6] Deng J H, Hu J Z, Deng P C, et al. Effect of oxide scales on initial corrosion behavior of SPHC hot rolled steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 331
[6] (鄧俊豪(hao), 胡杰珍, 鄧培昌等. 氧化皮對(dui)SPHC熱軋(ya)鋼(gang)板(ban)在熱帶(dai)海洋(yang)大(da)氣環(huan)境中(zhong)初期腐(fu)蝕(shi)行為的影響(xiang) [J]. 中(zhong)國(guo)腐(fu)蝕(shi)與防護學報, 2019, 39: 331)
[7] Li Z Y, Deng P C, Hu J Z, et al. Corrosion law of cold rolled steel plate in tropical ocean atmospheric environment [J]. Iron Steel, 2019, 54(9): 99
[7] (李子運, 鄧培昌(chang), 胡杰珍等(deng). 熱帶海洋大氣環(huan)境冷軋鋼板銹蝕規律(lv) [J]. 鋼鐵, 2019, 54(9): 99)
[8] State Bureau of Technical Supervision. GB/T 14165-1993 Ferrous metals- Test method of atmospheric exposure [S]. Beijing: China Standard Press, 1993
[8] (國家技術(shu)監督局. GB/T 14165-1993黑色金屬(shu)室外大氣(qi)暴露試驗方法 [S]. 北京(jing): 中國標(biao)準出版社, 1993)
[9] State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens [S]. Beijing: China Standard Press, 2016
[9] (中(zhong)華人民共(gong)和國(guo)國(guo)家質量監(jian)督檢(jian)驗檢(jian)疫(yi)總局, 中(zhong)國(guo)國(guo)家標準(zhun)化(hua)管理委員(yuan)會. GB/T 16545-2015金屬和合金的腐蝕腐蝕試樣上腐蝕產物(wu)的清除 [S]. 北京: 中(zhong)國(guo)標準(zhun)出版社, 2016)
[10] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
[11] Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
[11] (肖(xiao)葵, 董超芳, 李曉剛等. 大氣腐蝕下耐候(hou)鋼的初期行為規律 [J]. 鋼鐵研究學(xue)報, 2008, 20(10): 53)
[12] Cano H, Neff D, Morcillo M, et al. Characterization of corrosion products formed on Ni 2.4 wt%-Cu 0.5 wt%-Cr 0.5 wt% weathering steel exposed in marine atmospheres [J]. Corros. Sci., 2014, 87: 438
[13] Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
[14] H?rlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
[15] Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions [J]. Colloids Surf., 2005, 266A: 155
[16] Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
[17] Wei W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
[18] Zheng Y Y, Zou Y, Wang J. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot. Technol., 2011, 23: 93
[18] (鄭瑩瑩, 鄒妍, 王佳. 海洋環境中銹(xiu)層下碳鋼腐蝕(shi)行為的研究(jiu)進展 [J]. 腐蝕(shi)科(ke)學與防(fang)護技(ji)術, 2011, 23: 93)
[19] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
[20] Shi Z J, Wang L, Chen N, et al. Development and treatment of surface rust stabilization technology of weathering steel [J]. Corros. Sci. Prot. Technol., 2015, 27: 503
[20] (石(shi)振家(jia), 王雷, 陳(chen)楠等. 耐候鋼表面銹層(ceng)及其穩定化處理現狀與發展趨勢 [J]. 腐蝕科學(xue)與防護技術, 2015, 27: 503)