17-4PH不銹鋼在含SRB的模擬海水中的應力腐蝕開裂行為研究
摘要(yao)
在硫酸鹽還(huan)原(yuan)菌 (SRB) 接種(zhong)的(de)(de)(de)模擬海洋(yang)溶(rong)(rong)液(ye)中(zhong)(zhong),觀察并研(yan)究了SRB和(he)(he)外加(jia)應力對(dui)17-4 PH不銹(xiu)鋼(gang)腐(fu)蝕(shi)行為的(de)(de)(de)作(zuo)用。分析應力-應變曲(qu)線和(he)(he)斷(duan)口形貌,對(dui)比(bi)(bi)在無菌溶(rong)(rong)液(ye)和(he)(he)SRB接種(zhong)溶(rong)(rong)液(ye)中(zhong)(zhong)的(de)(de)(de)腐(fu)蝕(shi)行為差異(yi)。結(jie)果表(biao)明,與無菌溶(rong)(rong)液(ye)相比(bi)(bi),SRB接種(zhong)溶(rong)(rong)液(ye)中(zhong)(zhong)單級時效(xiao)、雙級時效(xiao)和(he)(he)調質(zhi)處理(li)試樣的(de)(de)(de)ISCC值(zhi)分別提高了5.2%,9.3%和(he)(he)4.4%。FeS的(de)(de)(de)產(chan)生(sheng)增強了陽極(ji)溶(rong)(rong)解過程并加(jia)速了腐(fu)蝕(shi)反(fan)應,雙級時效(xiao)試樣組織中(zhong)(zhong)粗大的(de)(de)(de)馬(ma)氏(shi)體有利(li)于氫的(de)(de)(de)進(jin)入和(he)(he)聚集,增加(jia)了試樣對(dui)SRB的(de)(de)(de)敏感度。單級時效(xiao)和(he)(he)調質(zhi)處理(li)試樣的(de)(de)(de)應力腐(fu)蝕(shi)開裂 (SCC) 機(ji)理(li)都是(shi)陽極(ji)溶(rong)(rong)解 (AD),而雙級時效(xiao)試樣是(shi)氫致開裂 (HIC)。
關鍵詞: 17-4 PH不銹鋼 ; 熱處(chu)理 ; 應變(bian)量 ; SRB ; 應力(li)腐蝕開裂
無氧(yang)環境(jing)和(he)(he)厭氧(yang)細菌在自然環境(jing)中普(pu)遍存在。因為(wei)環境(jing)中存在廣泛的(de)(de)(de)硫酸鹽,硫酸鹽還(huan)原(yuan)菌 (SRB) 通常被(bei)認(ren)為(wei)是(shi)微(wei)生(sheng)物誘導腐(fu)(fu)蝕(shi) (MIC) 的(de)(de)(de)主要元兇(xiong)。在SRB存在下(xia)金(jin)屬的(de)(de)(de)腐(fu)(fu)蝕(shi)機理(li)(li)是(shi)一個復雜的(de)(de)(de)生(sheng)物化(hua)學過(guo)程,先(xian)前(qian)研究(jiu)人員針對(dui)(dui)有SRB參與的(de)(de)(de)金(jin)屬腐(fu)(fu)蝕(shi)提出了各種機制。陰(yin)(yin)極(ji)(ji)(ji)(ji)(ji)去極(ji)(ji)(ji)(ji)(ji)化(hua)理(li)(li)論(lun)認(ren)為(wei),SRB通過(guo)一種叫(jiao)做“氫(qing)化(hua)酶”的(de)(de)(de)酶來消耗陰(yin)(yin)極(ji)(ji)(ji)(ji)(ji)氫(qing)。而(er)Costello[1]的(de)(de)(de)研究(jiu)表(biao)明(ming),H2S是(shi)一種由SO42-還(huan)原(yuan)得(de)到(dao)(dao)的(de)(de)(de)陰(yin)(yin)極(ji)(ji)(ji)(ji)(ji)活(huo)性化(hua)合(he)物。因此(ci),陰(yin)(yin)極(ji)(ji)(ji)(ji)(ji)去極(ji)(ji)(ji)(ji)(ji)化(hua)理(li)(li)論(lun)仍(reng)然存在很大爭議(yi)[2]。李(li)付紹等[3]分析(xi)了SRB對(dui)(dui)不(bu)銹(xiu)鋼(gang)(gang)的(de)(de)(de)腐(fu)(fu)蝕(shi)規(gui)律,研究(jiu)結果表(biao)明(ming),SRB的(de)(de)(de)代謝產物顯著降低了不(bu)銹(xiu)鋼(gang)(gang)的(de)(de)(de)點蝕(shi)電位(wei)。Chen等[4]觀(guan)察到(dao)(dao)材(cai)料(liao)表(biao)面(mian)生(sheng)物膜形(xing)成和(he)(he)縫隙中硫化(hua)物沉積導致(zhi)電位(wei)差增(zeng)大。Domzalicki等[5]在相似(si)的(de)(de)(de)陰(yin)(yin)極(ji)(ji)(ji)(ji)(ji)極(ji)(ji)(ji)(ji)(ji)化(hua)條件(jian)下(xia)分析(xi)了鐵素體(ti)(ti)-珠(zhu)光體(ti)(ti)和(he)(he)索氏體(ti)(ti)微(wei)觀(guan)結構對(dui)(dui)SRB氫(qing)輔(fu)助裂解(jie)的(de)(de)(de)影響(xiang)。
關于微生(sheng)物對SCC的(de)影響仍存(cun)(cun)在(zai)(zai)(zai)爭議。Gunasekaran等[6]報道,微生(sheng)物可(ke)以(yi)(yi)在(zai)(zai)(zai)低(di)碳(tan)鋼(gang)表面形(xing)成(cheng)保護膜,以(yi)(yi)抑制腐蝕(shi)。Xu等[7]表明,當培養(yang)基中缺(que)少有機碳(tan)時,SRB利用Fe0氧化釋放的(de)細(xi)胞(bao)外電(dian)子(zi)作(zuo)為(wei)電(dian)子(zi)供(gong)體,因此(ci)(ci)對碳(tan)鋼(gang)的(de)腐蝕(shi)性更強(qiang)。Zhang等[8]觀察(cha)到通(tong)過(guo)在(zai)(zai)(zai)培養(yang)基中加入電(dian)子(zi)介質可(ke)以(yi)(yi)增強(qiang)電(dian)子(zi)傳(chuan)遞并加速(su)腐蝕(shi),認為(wei)在(zai)(zai)(zai)細(xi)胞(bao)外電(dian)子(zi)轉移理論下,電(dian)子(zi)傳(chuan)遞控制SRB導致(zhi)的(de)MIC程度。Xu等[9]提出了生(sheng)物催(cui)化陰(yin)極硫(liu)酸鹽還原(yuan)理論,陽極反應為(wei)Fe0的(de)氧化,陰(yin)極反應為(wei)生(sheng)物催(cui)化下的(de)SO42-還原(yuan)。SO42-還原(yuan)發生(sheng)在(zai)(zai)(zai)SRB細(xi)胞(bao)質中,沒(mei)有物理陰(yin)極。鑒(jian)于此(ci)(ci),本文(wen)主要研究SRB存(cun)(cun)在(zai)(zai)(zai)對不銹鋼(gang)在(zai)(zai)(zai)模擬海(hai)水條件下應力腐蝕(shi)開裂(lie) (SCC) 行(xing)為(wei)的(de)影響規律。
1 實驗方法
實驗(yan)材(cai)料是撫順(shun)特殊鋼(gang)有限公(gong)司生(sheng)產的05Cr17Ni4Cu4Nb (17-4PH) 馬氏體(ti)沉淀(dian)硬化不銹(xiu)鋼(gang),其主要化學(xue)成分如表(biao)1所示(shi)。
表1 17-4 PH不銹鋼的(de)化學成分
本實驗用17-4 PH不(bu)銹鋼均先進行1040 ℃保溫1 h的固溶處理。單級時(shi)效(xiao)處理為(wei)(wei) (550 ℃×4 h),記為(wei)(wei)工(gong)(gong)藝A,相(xiang)(xiang)應的試(shi)(shi)(shi)樣(yang)稱為(wei)(wei)試(shi)(shi)(shi)樣(yang)A;雙(shuang)級時(shi)效(xiao)處理為(wei)(wei) (520 ℃×4 h+550 ℃×4 h),記為(wei)(wei)工(gong)(gong)藝B,相(xiang)(xiang)應的試(shi)(shi)(shi)樣(yang)稱為(wei)(wei)試(shi)(shi)(shi)樣(yang)B;調質+時(shi)效(xiao)處理為(wei)(wei) (820 ℃×0.5 h+550 ℃×4 h),記為(wei)(wei)工(gong)(gong)藝C,相(xiang)(xiang)應的試(shi)(shi)(shi)樣(yang)簡為(wei)(wei)試(shi)(shi)(shi)樣(yang)C。3種熱處理工(gong)(gong)藝冷卻方式均為(wei)(wei)空冷。升溫速率約150 ℃/min,冷卻速率約80 ℃/min。
模擬(ni)海水(shui)溶液(ye)(ye)是配制的pH為(wei)(wei)7.5的3.5% (質量分數) NaCl溶液(ye)(ye)。含SRB的模擬(ni)海水(shui)中(zhong)使(shi)用的SRB菌(jun)(jun)是Desulfovibrio型,并(bing)且在(zai)美(mei)國石油協會(hui)推薦的標準培(pei)養(yang)基中(zhong)培(pei)養(yang)。培(pei)養(yang)基I的成分為(wei)(wei):0.5 g/L Na2SO4,1 g/L NH4Cl,0.5 g/L K2HPO4,0.1 g/L CaCl2,2 g/L MgSO4·7H2O,1 g/L,1g/L酵母(mu)粉和3.5 g/L乳酸(suan)鈉;培(pei)養(yang)基II的成分為(wei)(wei):0.1 g/L抗(kang)壞血酸(suan),0.1 g/L保險(xian)粉和0.1 g/L硫酸(suan)亞鐵銨。用壓(ya)力蒸汽滅菌(jun)(jun)鍋(guo)在(zai)121 ℃保溫(wen)15 min以進行高壓(ya)滅菌(jun)(jun)并(bing)空氣冷卻至25 ℃,冷卻后加入經紫(zi)外線滅菌(jun)(jun)的培(pei)養(yang)基II,完成培(pei)養(yang)基配制。接(jie)菌(jun)(jun)時,將預先準備好的菌(jun)(jun)液(ye)(ye)放在(zai)恒(heng)溫(wen)培(pei)養(yang)箱內 (30±2) ℃活化30 min[10]。
根據ASTM G49-85標準,自制應(ying)力(li)(li)框架施加恒定軸向拉應(ying)變來(lai)研究17-4 PH不(bu)銹鋼(gang)在(zai)(zai)SRB接(jie)(jie)種溶(rong)液(ye)(ye)中(zhong)的(de)(de)應(ying)力(li)(li)腐蝕行(xing)為。試(shi)樣(yang)的(de)(de)尺寸如圖(tu)1a所示,圖(tu)1b為SRB接(jie)(jie)種溶(rong)液(ye)(ye)中(zhong)的(de)(de)應(ying)力(li)(li)腐蝕實(shi)驗裝置示意圖(tu)[11]。將(jiang)SRB接(jie)(jie)種溶(rong)液(ye)(ye)轉移至密封室,溶(rong)液(ye)(ye)和浸(jin)入的(de)(de)試(shi)樣(yang)在(zai)(zai)室溫下恒應(ying)變負載(zai)保持21 d。
圖1 用于應(ying)力腐蝕實驗的試樣尺寸及實驗容器(qi)示意圖
2 結果與討論
2.1 不同(tong)熱處理后的組織形貌分析
單級(ji)時效(xiao)、雙級(ji)時效(xiao)和調質(zhi)處(chu)理(li)(li)工藝后(hou)的(de)(de)(de)(de)不銹(xiu)鋼顯微組(zu)(zu)織如圖(tu)2所示。結果表明(ming),材料內主要由(you)(you)回火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)和少(shao)量(liang)鐵(tie)(tie)素體(ti)(ti)(ti)(ti)(ti)(ti)(ti)及殘(can)留奧(ao)(ao)(ao)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)組(zu)(zu)成(cheng)。圖(tu)2a中(zhong)(zhong)固溶處(chu)理(li)(li)后(hou)直接(jie)時效(xiao)處(chu)理(li)(li)的(de)(de)(de)(de)組(zu)(zu)織中(zhong)(zhong)同時存(cun)在(zai)(zai)淬火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)和回火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti),白(bai)色區(qu)(qu)域為淬火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti),黑(hei)色區(qu)(qu)域為回火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)[12]。Ziewiec等(deng)[13]認為,17-4 PH不銹(xiu)鋼是鐵(tie)(tie)素體(ti)(ti)(ti)(ti)(ti)(ti)(ti)的(de)(de)(de)(de)冷(leng)卻(que)模式,在(zai)(zai)冷(leng)卻(que)過(guo)程中(zhong)(zhong)相(xiang)(xiang)(xiang)變的(de)(de)(de)(de)順序(xu)為:萊氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)→δ鐵(tie)(tie)素體(ti)(ti)(ti)(ti)(ti)(ti)(ti)→γ奧(ao)(ao)(ao)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)+δ鐵(tie)(tie)素體(ti)(ti)(ti)(ti)(ti)(ti)(ti)→馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)+δ鐵(tie)(tie)素體(ti)(ti)(ti)(ti)(ti)(ti)(ti)。有(you)研究[14]表明(ming),組(zu)(zu)織中(zhong)(zhong)還(huan)有(you)少(shao)量(liang)的(de)(de)(de)(de)殘(can)留奧(ao)(ao)(ao)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)和第二相(xiang)(xiang)(xiang)析(xi)(xi)出(chu)物,主要為Cr7C3和fcc-Cu相(xiang)(xiang)(xiang),彌散析(xi)(xi)出(chu)的(de)(de)(de)(de)細小(xiao)fcc-Cu相(xiang)(xiang)(xiang)和位錯交互作用產生(sheng)強化。圖(tu)2b中(zhong)(zhong)雙級(ji)時效(xiao)處(chu)理(li)(li)后(hou),白(bai)色組(zu)(zu)織區(qu)(qu)域減小(xiao),黑(hei)色組(zu)(zu)織區(qu)(qu)域增大,組(zu)(zu)織中(zhong)(zhong)部分(fen)淬火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)轉變為條帶狀(zhuang)連接(jie)成(cheng)片狀(zhuang)的(de)(de)(de)(de)回火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)。在(zai)(zai)雙級(ji)時效(xiao)處(chu)理(li)(li)之后(hou),回火馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)均勻地分(fen)布在(zai)(zai)試(shi)樣中(zhong)(zhong)。圖(tu)2c中(zhong)(zhong)調質(zhi)處(chu)理(li)(li)后(hou),組(zu)(zu)織中(zhong)(zhong)馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)均勻細小(xiao),層片狀(zhuang)位向關(guan)系明(ming)確。晶界相(xiang)(xiang)(xiang)互連接(jie)成(cheng)網(wang)狀(zhuang),將主要由(you)(you)馬(ma)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)和殘(can)留奧(ao)(ao)(ao)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)組(zu)(zu)成(cheng)的(de)(de)(de)(de)晶粒包束在(zai)(zai)其中(zhong)(zhong),這種組(zu)(zu)織形態與鋼中(zhong)(zhong)產生(sheng)較多的(de)(de)(de)(de)殘(can)留奧(ao)(ao)(ao)氏(shi)(shi)體(ti)(ti)(ti)(ti)(ti)(ti)(ti)有(you)關(guan)。
圖(tu)2 經不(bu)同工(gong)藝處(chu)理(li)的17-4PH不(bu)銹鋼的顯(xian)微組織(zhi)
2.2 不同測試介質中的力學性能
2.2.1 應力-應變曲線(xian)分析
圖3為(wei)不(bu)(bu)同熱處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)工藝的(de)(de)(de)17-4 PH不(bu)(bu)銹(xiu)鋼在無菌(jun)和(he)接種溶(rong)液中的(de)(de)(de)應(ying)力-應(ying)變(bian)曲(qu)線(xian)。以單(dan)級(ji)(ji)時效(xiao)、雙(shuang)(shuang)(shuang)級(ji)(ji)時效(xiao)和(he)調質處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)試(shi)樣(yang)在空氣中的(de)(de)(de)應(ying)力-應(ying)變(bian)曲(qu)線(xian)為(wei)參(can)考來評價無菌(jun)和(he)SRB接種溶(rong)液中的(de)(de)(de)SCC敏感(gan)性。在無菌(jun)溶(rong)液中,雙(shuang)(shuang)(shuang)級(ji)(ji)時效(xiao)過程后(hou)試(shi)樣(yang)的(de)(de)(de)屈(qu)服(fu)強度(du)高于單(dan)級(ji)(ji)時效(xiao)處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)和(he)調質處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)后(hou)試(shi)樣(yang)的(de)(de)(de)屈(qu)服(fu)強度(du),分別(bie)約(yue)為(wei)1010,980和(he)855 MPa。在SRB接種的(de)(de)(de)溶(rong)液中,雙(shuang)(shuang)(shuang)級(ji)(ji)時效(xiao)處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)、單(dan)級(ji)(ji)時效(xiao)和(he)調質處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)試(shi)樣(yang)的(de)(de)(de)屈(qu)服(fu)強度(du),分別(bie)約(yue)為(wei)950,970和(he)850 MPa,分別(bie)比無菌(jun)溶(rong)液降低了(le)5.9%,1%和(he)0.58%。實(shi)驗結果表(biao)明,雙(shuang)(shuang)(shuang)級(ji)(ji)時效(xiao)處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)后(hou)的(de)(de)(de)17-4 PH不(bu)(bu)銹(xiu)鋼對SRB最敏感(gan),經過調質處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)工藝試(shi)樣(yang)的(de)(de)(de)SRB敏感(gan)性降低。
圖3 經不(bu)同工(gong)藝(yi)熱處理(li)的17-4 PH不(bu)銹鋼試樣在(zai)不(bu)同環境中的應力-應變曲線及(ji)斷面收(shou)縮率
圖3d為17-4 PH不銹(xiu)鋼在(zai)不同(tong)環(huan)境介質中(zhong)的(de)斷(duan)(duan)(duan)面(mian)(mian)收縮(suo)率。可(ke)知(zhi),單級(ji)(ji)時效(xiao)、雙級(ji)(ji)時效(xiao)和調(diao)質處理(li)試(shi)樣(yang)均在(zai)空氣中(zhong)擁有最(zui)大的(de)斷(duan)(duan)(duan)面(mian)(mian)收縮(suo)率。與(yu)空氣中(zhong)相比(bi),施加的(de)恒定應變(bian)可(ke)以降低(di)試(shi)樣(yang)的(de)斷(duan)(duan)(duan)面(mian)(mian)收縮(suo)率。與(yu)無菌(jun)溶液相比(bi),SRB接種溶液中(zhong)單級(ji)(ji)時效(xiao)、雙級(ji)(ji)時效(xiao)和調(diao)質處理(li)試(shi)樣(yang)的(de)斷(duan)(duan)(duan)面(mian)(mian)收縮(suo)率分(fen)別減少了5.38%, 7.74%和3.72%。
有研究[15,16]結果表明:在(zai)SRB接(jie)種的(de)(de)溶液中存在(zai)H+,H+誘導(dao)材料的(de)(de)局部出現(xian)可(ke)塑性(xing),導(dao)致材料的(de)(de)延伸率出現(xian)異常的(de)(de)現(xian)象。因此,提出可(ke)采用材料斷裂前后截(jie)面的(de)(de)尺寸變化的(de)(de)斷面收(shou)縮率來測量應力腐蝕敏(min)感(gan)性(xing) (ISCC)。ISCC可(ke)由下面兩式計(ji)算(suan)獲得[17]:
式中(zhong),A0為試(shi)樣的原始(shi)橫截面積,mm2;A1為斷裂后試(shi)樣的橫截面積,mm2。
式中(zhong),ψs為在3.5%NaCl溶液中(zhong)測得的斷面(mian)收(shou)縮(suo)率(lv),%;ψa為在空氣中(zhong)測得的斷面(mian)收(shou)縮(suo)率(lv),%。
由上面兩式可知(zhi),當ISCC的(de)(de)值(zhi)越接近1時,SCC的(de)(de)敏(min)感性越高。表2顯示了(le)在無菌和(he)SRB接種溶液中17-4PH不銹鋼的(de)(de)ISCC值(zhi)。可見,在有(you)菌環(huan)境下,單(dan)級時效(xiao)、雙級時效(xiao)和(he)調(diao)質處(chu)理試樣的(de)(de)ISCC分別提(ti)高了(le)5.2%,9.3%和(he)4.4%。
表2 不同熱處(chu)理后的試樣在無(wu)菌(jun)和SRB接種溶液(ye)中的ISCC值
根據經典腐(fu)蝕(shi)理論(lun),細(xi)菌(jun)通過(guo)(guo)稱(cheng)為氫(qing)化(hua)酶的酶消耗陰(yin)極氫(qing)。在靠近腐(fu)蝕(shi)電(dian)位(wei)的電(dian)位(wei)下形成的氧化(hua)層(ceng)或腐(fu)蝕(shi)產物的存在將催化(hua)析(xi)氫(qing)[18]。也有(you)研究人員(yuan)提出“替代(dai)理論(lun)”,涉及細(xi)菌(jun)本身,位(wei)于金屬上或與金屬相鄰的微生物不直接(jie)侵(qin)蝕(shi)金屬,它們通過(guo)(guo)新(xin)陳代(dai)謝的副產物誘導或促進腐(fu)蝕(shi)[19]。在SRB接(jie)種溶液中,電(dian)極反應如下:
2.2.2 斷口形貌分析(xi)
圖(tu)(tu)4顯示了(le)(le)17-4 PH不銹鋼在(zai)(zai)(zai)(zai)無(wu)菌(jun)和(he)接種溶液(ye)(ye)(ye)中(zhong)的(de)(de)(de)微觀(guan)斷(duan)口形(xing)貌(mao)。在(zai)(zai)(zai)(zai)圖(tu)(tu)4a和(he)d中(zhong),單級(ji)時效試樣的(de)(de)(de)韌性顯著(zhu)(zhu)下降(jiang)。在(zai)(zai)(zai)(zai)無(wu)菌(jun)溶液(ye)(ye)(ye)中(zhong),沿著(zhu)(zhu)不同高(gao)度的(de)(de)(de)平行(xing)解(jie)理面(mian)形(xing)成解(jie)理裂(lie)(lie)縫。在(zai)(zai)(zai)(zai)含SRB的(de)(de)(de)溶液(ye)(ye)(ye)中(zhong),在(zai)(zai)(zai)(zai)斷(duan)裂(lie)(lie)面(mian)上出(chu)(chu)現了(le)(le)狹(xia)長(chang)的(de)(de)(de)裂(lie)(lie)紋。在(zai)(zai)(zai)(zai)圖(tu)(tu)4c中(zhong),調質處理試樣在(zai)(zai)(zai)(zai)無(wu)菌(jun)溶液(ye)(ye)(ye)的(de)(de)(de)斷(duan)裂(lie)(lie)表面(mian)上出(chu)(chu)現大量不規(gui)則形(xing)狀的(de)(de)(de)凹坑(keng)和(he)微孔,為典型延性斷(duan)裂(lie)(lie)特征(zheng)。在(zai)(zai)(zai)(zai)圖(tu)(tu)4f中(zhong),含SRB溶液(ye)(ye)(ye)中(zhong)的(de)(de)(de)試樣上觀(guan)察到類似的(de)(de)(de)斷(duan)裂(lie)(lie)特征(zheng)。在(zai)(zai)(zai)(zai)圖(tu)(tu)4b和(he)e中(zhong),雙級(ji)時效試樣中(zhong),脆性斷(duan)裂(lie)(lie)在(zai)(zai)(zai)(zai)斷(duan)裂(lie)(lie)表面(mian)上更(geng)明顯,并且可觀(guan)察到更(geng)深(shen)和(he)更(geng)寬的(de)(de)(de)裂(lie)(lie)縫。大尺(chi)寸(cun)裂(lie)(lie)縫對(dui)應于斷(duan)面(mian)收縮(suo)率(lv)的(de)(de)(de)降(jiang)低,這證實雙級(ji)時效的(de)(de)(de)17-4 PH不銹鋼對(dui)SRB最(zui)敏感。
圖4 經不同(tong)(tong)工藝熱處(chu)理的17-4 PH不銹鋼在不同(tong)(tong)環(huan)境中的斷口形貌
通過(guo)研(yan)(yan)究鋼中(zhong)氫(qing)(qing)(qing)的(de)(de)滲透、氫(qing)(qing)(qing)的(de)(de)進入機(ji)制、氫(qing)(qing)(qing)的(de)(de)擴散(san)率(lv)以及氫(qing)(qing)(qing)的(de)(de)捕捉(zhuo)和(he)去(qu)除可(ke)知(zhi),對于相同的(de)(de)微觀結構(gou),隨(sui)著夾(jia)雜(za)物含量(liang)的(de)(de)增(zeng)(zeng)加(jia),鋼的(de)(de)抗(kang)HIC性(xing)能(neng)降(jiang)低(di),局部(bu)(bu)不規則性(xing)對HIC敏感(gan)性(xing)也有顯(xian)著影響[20]。研(yan)(yan)究表明[21],氫(qing)(qing)(qing)原子(zi)可(ke)以降(jiang)低(di)Fe-Fe鍵的(de)(de)內(nei)聚(ju)力或(huo)增(zeng)(zeng)加(jia)鋼的(de)(de)局部(bu)(bu)脆性(xing)從而引發微裂紋(wen)(wen)。雙(shuang)級(ji)時效(xiao)試樣中(zhong)包含的(de)(de)夾(jia)雜(za)物或(huo)粗(cu)大的(de)(de)板條(tiao)狀馬氏體為氫(qing)(qing)(qing)的(de)(de)聚(ju)集(ji)提(ti)供了條(tiao)件(jian),極易造成(cheng)(cheng)裂紋(wen)(wen)萌生[22]。一旦微裂紋(wen)(wen)開(kai)始(shi)擴展(zhan),積聚(ju)的(de)(de)氫(qing)(qing)(qing)原子(zi)也會通過(guo)增(zeng)(zeng)加(jia)裂紋(wen)(wen)尖端鋼的(de)(de)局部(bu)(bu)溶解速率(lv)來促進裂紋(wen)(wen)擴展(zhan)或(huo)通過(guo)降(jiang)低(di)新形成(cheng)(cheng)平面的(de)(de)表面能(neng)來降(jiang)低(di)斷裂功[23]。
SRB接種溶(rong)液中(zhong)17-4 PH不銹鋼的(de)(de)(de)側表(biao)面(mian)(mian)斷(duan)(duan)(duan)裂形態(tai)的(de)(de)(de)顯(xian)微照(zhao)片見圖(tu)(tu)5。對于全部試(shi)樣,捕獲(huo)區域距斷(duan)(duan)(duan)裂線約300 μm。不同(tong)(tong)熱處(chu)理(li)條件下的(de)(de)(de)側面(mian)(mian)顯(xian)微照(zhao)片顯(xian)示出不同(tong)(tong)的(de)(de)(de)形態(tai)特征(zheng)。在(zai)圖(tu)(tu)5a中(zhong),單(dan)級(ji)(ji)時(shi)效處(chu)理(li)試(shi)樣的(de)(de)(de)側表(biao)面(mian)(mian)上出現了一些細小的(de)(de)(de)微裂紋。對于調質處(chu)理(li)的(de)(de)(de)試(shi)樣可觀察到類似的(de)(de)(de)形態(tai) (圖(tu)(tu)5c)。在(zai)雙級(ji)(ji)時(shi)效試(shi)樣上觀察到了更深的(de)(de)(de)裂紋 (圖(tu)(tu)5b),這證實了雙級(ji)(ji)時(shi)效17-4 PH不銹鋼的(de)(de)(de)脆性斷(duan)(duan)(duan)裂特征(zheng)。
圖5 經不同(tong)工藝(yi)熱(re)處理的17-4 PH不銹鋼試樣在SRB接種溶液中的側面斷裂形貌(mao)
3 結論
(1) 熱處理(li)(li)工藝可以提高(gao)17-4 PH不銹鋼(gang)的抗(kang)腐(fu)蝕性(xing)能(neng),試樣的耐電化學腐(fu)蝕能(neng)力(li)表現(xian)為:調質處理(li)(li)試樣>單(dan)級時效(xiao)處理(li)(li)試樣>雙級時效(xiao)處理(li)(li)試樣。
(2) 在施(shi)加應力的單(dan)獨作(zuo)用下,雙(shuang)級(ji)時效試樣中的回火馬(ma)氏體尺寸粗(cu)大,促進裂紋萌生,降低了試樣的屈(qu)服輕度,增加了應力腐蝕敏感性。
(3) 在SRB接種(zhong)溶(rong)(rong)液(ye)中,FeS和H2S的產生增強(qiang)了陽(yang)極溶(rong)(rong)解和氫滲(shen)透(tou),加速(su)了腐蝕反應(ying)。與無菌溶(rong)(rong)液(ye)相(xiang)比,阻抗值降低,ISCC增加。雙(shuang)級(ji)時(shi)效試樣的ISCC變化量最大(da),對SRB最敏感。
參(can)考(kao)文(wen)獻
[1] Song J, Curtin W A. A nanoscale mechanism of hydrogen embrittlement in metals [J]. Acta Mater., 2011, 59(4): 1557
doi: 10.1016/j.actamat.2010.11.019
[2] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
doi: 10.1007/s11274-012-1116-0 pmid: 22806745
[3] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Metall. Sin., 2009, 45: 536
[3] (李(li)付(fu)紹, 安茂忠, 劉光洲等(deng). 硫酸鹽(yan)還(huan)原菌(jun)對18-8不銹鋼(gang)點蝕行為的影(ying)響 [J]. 金屬學(xue)報, 2009, 45: 536)
[4] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[5] Dom?alicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2015, 58: 413
[6] Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
[7] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
[8] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
pmid: 25023048
[9] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
pmid: 27071053
[10] Zhao Z H, Wang X, Wu M. Effect of heat treatment on corrosion resistance of 05Cr17Ni4Cu4Nb steel [J]. Heat Treat. Met., 2018, 43(12): 109
[10] (趙(zhao)志浩(hao), 王旭, 吳明. 熱處理(li)對(dui)05Cr17Ni4Cu4Nb鋼耐蝕性(xing)的影響 [J]. 金屬熱處理(li), 2018, 43(12): 109)
[11] Wu M, Zhao Z H, Wang X, et al. Synergistic effects of a sulfate-reducing bacteria and an applied stress on the corrosion behavior of 17-4 PH stainless steel after different heat treatments[J]. Int. J. Electrochem. Sci., 2020, 15: 208
[12] Liu R L, Yan M F, Qiao Y J, et al. Heat treatment and tensile properties of martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(2): 87
[12] (劉瑞良, 閆(yan)牧夫, 喬英(ying)杰等(deng). 馬(ma)氏體不銹鋼熱(re)(re)處理及其拉伸性(xing)能 [J]. 金屬熱(re)(re)處理, 2013, 38(2): 87)
[13] Ziewiec A, Zielińska-Lipiec A, Tasak E. Microstructure of welded joints of x5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment [J]. Arch. Metall. Mater., 2014, 59(3): 965
[14] Deng D W, Chen R, Tian X, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel [J]. Heat Treat. Met., 2013, 38(4): 32
[14] (鄧德(de)偉, 陳蕊, 田(tian)鑫等. 熱處理對17-4PH馬氏體不銹(xiu)鋼顯微組織及性(xing)能的影響 [J]. 金屬(shu)熱處理, 2013, 38(4): 32)
[15] Delafosse D, Magnin T. Hydrogen induced plasticity in stress corrosion cracking of engineering systems [J]. Eng. Fract. Mech., 2001, 68: 693
[16] Ma H C, Liu Z Y, Du C W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[17] Torres-Islas A, González-Rodríguez J G. Effect of electrochemical potential and solution concentration on the SCC behaviour of X-70 pipeline steel in NaHCO3 [J]. Int. J. Electrochem. Sci., 2009, 4: 640
[18] Meng G Z, Zhang C, Cheng Y F. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution [J]. Corros. Sci., 2008, 50: 3116
[19] Wang D, Xie F, Wu M, et al. Stress corrosion cracking behavior of X80 pipeline steel in acid soil environment with SRB [J]. Metall. Mater. Trans., 2017, 48A: 2999
[20] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50: 1169
[21] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
[22] Casanova T, Crousier J. The influence of an oxide layer on hydrogen permeation through steel [J]. Corros. Sci., 1996, 38: 1535
doi: 10.1016/0010-938X(96)00045-5
[23] Jin T Y, Cheng Y F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel [J]. Corros. Sci., 2011, 53: 850