摘要: 用(yong)氧化石墨(mo)烯(GO)濃縮(suo)漿(jiang)分散法制備GO改(gai)(gai)性(xing)(xing)(xing)(xing)環氧隔(ge)(ge)熱(re)(re)涂(tu)層(ceng)(ceng),在濃度(du)(du)(質量分數(shu))為3.5% 的(de)NaCl溶液(ye)(50℃)中(zhong)進(jin)行腐(fu)(fu)(fu)蝕(shi)(shi)實(shi)驗(yan)并測試其(qi)腐(fu)(fu)(fu)蝕(shi)(shi)前后(hou)的(de)隔(ge)(ge)熱(re)(re)性(xing)(xing)(xing)(xing)能(neng)。432 h的(de)腐(fu)(fu)(fu)蝕(shi)(shi)電(dian)化學(xue)測試結(jie)果(guo)表明(ming),用(yong)0.5%(質量分數(shu)) 的(de)GO改(gai)(gai)性(xing)(xing)(xing)(xing)顯著提高了涂(tu)層(ceng)(ceng)低頻阻抗,涂(tu)層(ceng)(ceng)的(de)耐蝕(shi)(shi)性(xing)(xing)(xing)(xing)優(you)于無GO改(gai)(gai)性(xing)(xing)(xing)(xing)和(he)1.0% GO改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)涂(tu)層(ceng)(ceng);SEM分析結(jie)果(guo)表明(ming),用(yong)0.5%和(he)1.0% GO改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)隔(ge)(ge)熱(re)(re)涂(tu)層(ceng)(ceng)腐(fu)(fu)(fu)蝕(shi)(shi)432 h后(hou)表面(mian)形(xing)貌(mao)完好(hao),涂(tu)層(ceng)(ceng)/基體界面(mian)處沒有出(chu)現(xian)裂紋(wen)和(he)腐(fu)(fu)(fu)蝕(shi)(shi)產物,而未經(jing)GO改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)涂(tu)層(ceng)(ceng)出(chu)現(xian)了明(ming)顯腐(fu)(fu)(fu)蝕(shi)(shi)破壞(huai)。腐(fu)(fu)(fu)蝕(shi)(shi)試驗(yan)前,0.5%、1.0% GO改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)涂(tu)層(ceng)(ceng)與沒有改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)涂(tu)層(ceng)(ceng)的(de)隔(ge)(ge)熱(re)(re)性(xing)(xing)(xing)(xing)能(neng)沒有明(ming)顯的(de)區別(bie);腐(fu)(fu)(fu)蝕(shi)(shi)432 h后(hou)涂(tu)層(ceng)(ceng)對250℃熱(re)(re)源分別(bie)降溫98℃、123℃、115℃,粘(zhan)結(jie)強度(du)(du)分別(bie)降低了3.9、1.0、2.3 MPa。實(shi)驗(yan)結(jie)果(guo)表明(ming),用(yong)0.5% GO改(gai)(gai)性(xing)(xing)(xing)(xing)的(de)涂(tu)層(ceng)(ceng)耐蝕(shi)(shi)和(he)隔(ge)(ge)熱(re)(re)性(xing)(xing)(xing)(xing)能(neng)最好(hao)。
關鍵(jian)詞(ci): 材料(liao)失效與保(bao)護 ; 耐(nai)蝕與隔熱(re) ; 氧(yang)化石墨(mo)烯改(gai)性 ; 環氧(yang)涂層
在十三五期間,為(wei)了實現“節能減排”熱(re)(re)電聯產技術受到(dao)重視。隨著供熱(re)(re)改造工程(cheng)的(de)進行供熱(re)(re)管道的(de)應用越來越多(duo)、傳輸距(ju)離越來越遠,傳統的(de)保溫技術亟需(xu)升級。
隔(ge)熱(re)(re)(re)涂(tu)(tu)層是(shi)一種(zhong)功能型(xing)涂(tu)(tu)層,耐熱(re)(re)(re)性(xing)能好(hao)、熱(re)(re)(re)導(dao)率低(di),可(ke)提(ti)高(gao)供熱(re)(re)(re)管(guan)道的(de)(de)(de)(de)熱(re)(re)(re)效(xiao)率,保障供熱(re)(re)(re)系統的(de)(de)(de)(de)安全和運(yun)行效(xiao)益(yi)。具(ju)有獨特結構(gou)的(de)(de)(de)(de)空心玻(bo)璃(li)珠(zhu)密度(du)低(di)、熱(re)(re)(re)導(dao)率低(di),是(shi)制備隔(ge)熱(re)(re)(re)涂(tu)(tu)層的(de)(de)(de)(de)理想材料。Shinkareva等[1]在(zai)涂(tu)(tu)層中(zhong)加(jia)入(ru)空心微(wei)珠(zhu)填料,使(shi)其(qi)熱(re)(re)(re)導(dao)率明(ming)顯降(jiang)低(di)。季清等[2]將(jiang)玻(bo)璃(li)微(wei)珠(zhu)添加(jia)到聚苯乙烯,其(qi)熱(re)(re)(re)導(dao)率隨(sui)玻(bo)璃(li)微(wei)珠(zhu)含量的(de)(de)(de)(de)提(ti)高(gao)而降(jiang)低(di)。玻(bo)璃(li)微(wei)珠(zhu)的(de)(de)(de)(de)添加(jia)量較低(di)時(shi)隔(ge)熱(re)(re)(re)機制主要為阻隔(ge)型(xing),隨(sui)著添加(jia)量的(de)(de)(de)(de)增(zeng)加(jia)反射型(xing)機制占主導(dao)地位(wei)。王金偉等[3]將(jiang)空心玻(bo)璃(li)微(wei)珠(zhu)和海泡石雙填料同時(shi)加(jia)入(ru)到環(huan)氧樹脂基體(ti),其(qi)添加(jia)量分(fen)別為15%時(shi)厚(hou)度(du)約(yue)3 mm的(de)(de)(de)(de)涂(tu)(tu)層在(zai)500℃高(gao)溫工作2 min后金屬(shu)基體(ti)背面的(de)(de)(de)(de)溫度(du)約(yue)為300℃。在(zai)實際服役環(huan)境中(zhong),部分(fen)地區(qu)的(de)(de)(de)(de)供熱(re)(re)(re)管(guan)道長期處(chu)在(zai)重鹽土(tu)壤及高(gao)溫、高(gao)濕等腐蝕環(huan)境中(zhong)。這將(jiang)劣化(hua)涂(tu)(tu)層的(de)(de)(de)(de)穩定性(xing)和隔(ge)熱(re)(re)(re)性(xing)能,甚至使(shi)供熱(re)(re)(re)管(guan)道的(de)(de)(de)(de)關鍵構(gou)件隔(ge)熱(re)(re)(re)防護(hu)失效(xiao),降(jiang)低(di)使(shi)用(yong)壽命(ming)。因此,為了得到更為穩定的(de)(de)(de)(de)隔(ge)熱(re)(re)(re)性(xing)能,必須進一步提(ti)高(gao)涂(tu)(tu)層的(de)(de)(de)(de)耐蝕性(xing)。
添加(jia)適(shi)量的(de)(de)(de)(de)填料(liao)(liao),是(shi)提高涂(tu)(tu)層(ceng)(ceng)耐蝕性能(neng)的(de)(de)(de)(de)有(you)(you)效(xiao)方法[4]。近年來,氧(yang)化石(shi)(shi)墨烯(GO)作(zuo)為一種(zhong)理想的(de)(de)(de)(de)二維層(ceng)(ceng)狀(zhuang)納米填料(liao)(liao)引起了廣泛的(de)(de)(de)(de)關注。GO可(ke)在(zai)涂(tu)(tu)層(ceng)(ceng)中形成抗滲(shen)(shen)透的(de)(de)(de)(de)迷宮效(xiao)應(ying),阻礙腐蝕介(jie)質的(de)(de)(de)(de)滲(shen)(shen)透[5,6];表面(mian)的(de)(de)(de)(de)含氧(yang)基(ji)(ji)(ji)(ji)團如(ru)羥基(ji)(ji)(ji)(ji)、羧基(ji)(ji)(ji)(ji)和(he)環氧(yang)基(ji)(ji)(ji)(ji)不僅(jin)增強與有(you)(you)機(ji)涂(tu)(tu)層(ceng)(ceng)的(de)(de)(de)(de)相(xiang)容(rong)性,還有(you)(you)利于氧(yang)化石(shi)(shi)墨烯的(de)(de)(de)(de)功能(neng)化[7]。Singh等(deng)[8]研究發現,銅基(ji)(ji)(ji)(ji)體的(de)(de)(de)(de)GO涂(tu)(tu)層(ceng)(ceng)可(ke)作(zuo)為電子和(he)離子傳輸的(de)(de)(de)(de)屏障,抑制腐蝕。Rajabi等(deng)[9]在(zai)環氧(yang)涂(tu)(tu)層(ceng)(ceng)中添加(jia)GO,發現其阻隔性能(neng)明顯提高。Ramezanzadeh等(deng)對(dui)(dui)GO表面(mian)進行(xing)二氧(yang)化硅(gui)、對(dui)(dui)苯二胺、3-氨(an)丙基(ji)(ji)(ji)(ji)三(san)乙氧(yang)基(ji)(ji)(ji)(ji)硅(gui)烷等(deng)接(jie)枝(zhi)改性,提高了GO在(zai)涂(tu)(tu)料(liao)(liao)中的(de)(de)(de)(de)分(fen)散性,使涂(tu)(tu)料(liao)(liao)體系具有(you)(you)優(you)異的(de)(de)(de)(de)抗腐蝕性能(neng)[10,11,12]。
為了提(ti)高(gao)涂(tu)(tu)層(ceng)(ceng)(ceng)在腐蝕(shi)環(huan)(huan)境中(zhong)(zhong)的隔(ge)熱(re)(re)(re)性能(neng),研制(zhi)(zhi)同時具有耐(nai)腐蝕(shi)、耐(nai)溫隔(ge)熱(re)(re)(re)的新型多功能(neng)隔(ge)熱(re)(re)(re)涂(tu)(tu)料,本文采用氧(yang)化石墨(mo)烯(GO)濃縮漿(jiang)分(fen)散法(fa)制(zhi)(zhi)備不同GO含量的改性環(huan)(huan)氧(yang)隔(ge)熱(re)(re)(re)涂(tu)(tu)層(ceng)(ceng)(ceng),將其(qi)在3.5% NaCl溶液(ye)(50℃)中(zhong)(zhong)進行腐蝕(shi)試(shi)驗,用電化學阻(zu)抗(kang)譜(pu)(EIS)、掃(sao)描(miao)電子顯微(wei)鏡、粘結(jie)強度(du)測試(shi)儀等手(shou)段表征(zheng)涂(tu)(tu)層(ceng)(ceng)(ceng)的耐(nai)蝕(shi)性,并(bing)測試(shi)腐蝕(shi)試(shi)驗前后涂(tu)(tu)層(ceng)(ceng)(ceng)的隔(ge)熱(re)(re)(re)性能(neng)。同時,還進行涂(tu)(tu)層(ceng)(ceng)(ceng)的高(gao)低溫冷熱(re)(re)(re)循環(huan)(huan)試(shi)驗以觀測其(qi)抗(kang)冷熱(re)(re)(re)沖(chong)擊和熱(re)(re)(re)老(lao)化性能(neng)。
1 實驗方法
1.1 氧(yang)(yang)化石墨烯改性環氧(yang)(yang)隔熱(re)涂層(ceng)的制備(bei)
實驗用(yong)材料:環氧樹脂、四氫呋喃、二(er)甲酰(xian)胺(an)、間苯二(er)胺(an)與丁醇;650聚酰(xian)胺(an);氧化石(shi)墨烯(GO)由Hummer法(fa)制(zhi)備(bei);BYK110分(fen)散(san)劑、空心玻(bo)璃(li)珠(zhu)。
在適量混合溶劑(四氫呋喃:二甲基甲酰(xian)胺(an)=4:1)中(zhong)加(jia)入BYK110分(fen)散劑,快速攪拌(ban)20 min后緩(huan)慢(man)加(jia)入氧(yang)(yang)化石墨(mo)烯,繼(ji)續攪拌(ban)、超聲、離心,去(qu)掉上層清液(ye)后得到氧(yang)(yang)化石墨(mo)烯濃縮(suo)漿(IMR-GO)。
No.1隔(ge)熱涂層(ceng)由甲、乙(yi)兩種組(zu)(zu)分組(zu)(zu)成(cheng),甲組(zu)(zu)分包(bao)括:81份(fen)(fen)E51環氧(yang)樹脂、9份(fen)(fen)660A活性稀釋劑、10份(fen)(fen)空心玻璃珠;乙(yi)組(zu)(zu)分包(bao)括:25份(fen)(fen)復合固(gu)化劑(15份(fen)(fen)650聚酰胺、7份(fen)(fen)間(jian)苯二胺、3份(fen)(fen)丁醇)。
分(fen)(fen)別將甲乙組分(fen)(fen)的(de)各(ge)成分(fen)(fen)混(hun)合后充分(fen)(fen)攪(jiao)拌分(fen)(fen)散,再將甲組分(fen)(fen)與乙組分(fen)(fen)按100:25的(de)比例混(hun)合,固(gu)化(hua)后制備成No.1隔熱涂(tu)層。向環(huan)氧樹脂中分(fen)(fen)別添加0.5%、1.0%氧化(hua)石墨烯含量(質量分(fen)(fen)數)的(de)IMR-GO,充分(fen)(fen)攪(jiao)拌至均勻分(fen)(fen)散后加入(ru)相應(ying)比例的(de)活(huo)性稀釋劑、空心玻璃(li)珠、復合固(gu)化(hua)劑,固(gu)化(hua)后得到No.2和(he)No.3隔熱涂(tu)層。
1.2 性能(neng)表征(zheng)
用透射電子顯(xian)微鏡(jing)(TEM,Tacnai F30)觀察氧化石墨烯的(de)形(xing)貌(mao)和(he)分散狀態;用環(huan)境掃描電子顯(xian)微鏡(jing)(SEM,XL30-FEG-ESEM)觀察涂層腐蝕后(hou)的(de)表(biao)面和(he)截面形(xing)貌(mao)。用數(shu)碼相機拍(pai)攝(she)浸泡腐蝕后(hou)和(he)冷熱循環(huan)前后(hou)的(de)宏觀形(xing)貌(mao)。
使用(yong)Gamry 600+電(dian)(dian)(dian)(dian)化(hua)學(xue)工作(zuo)站進行電(dian)(dian)(dian)(dian)化(hua)學(xue)測試(shi)。電(dian)(dian)(dian)(dian)解(jie)池采用(yong)三(san)電(dian)(dian)(dian)(dian)極體(ti)系(xi),涂覆有(you)不同涂層的樣板作(zuo)為(wei)(wei)(wei)工作(zuo)電(dian)(dian)(dian)(dian)極(WE),飽和甘(gan)汞電(dian)(dian)(dian)(dian)極(SCE)為(wei)(wei)(wei)參比電(dian)(dian)(dian)(dian)極(RE),金屬鉑(bo)片為(wei)(wei)(wei)輔助電(dian)(dian)(dian)(dian)極(CE)。電(dian)(dian)(dian)(dian)化(hua)學(xue)阻抗(kang)譜(EIS)的頻(pin)率范圍(wei)為(wei)(wei)(wei)105~10-2 Hz,正弦波振幅為(wei)(wei)(wei)20 mV。涂層樣品的有(you)效(xiao)測試(shi)面積為(wei)(wei)(wei)12.56 cm2。測試(shi)前將試(shi)樣在溶液中(zhong)浸泡30 min以使開路電(dian)(dian)(dian)(dian)位穩定(ding)。每個樣品在50℃、3.5% NaCl溶液中(zhong)進行三(san)次(ci)電(dian)(dian)(dian)(dian)化(hua)學(xue)試(shi)驗,以檢(jian)驗測試(shi)的重復(fu)性。借(jie)助Zsimpwin擬合(he)分析阻抗(kang)的測量(liang)結(jie)果。
在尺寸為50 mm×50 mm×10 mm的(de)碳(tan)鋼(gang)板表(biao)面涂刷隔熱(re)涂層(ceng),按照GB/T5210-2006標(biao)準測試(shi)涂層(ceng)的(de)粘結(jie)強(qiang)度(?b/MPa)。?b=F/A,其中F為加載負荷(N),A為粘結(jie)面積(mm2)。在3.5% NaCl溶液(ye)(50℃)中進(jin)行(xing)腐蝕浸泡實驗,測定浸泡不同時間后涂層(ceng)粘結(jie)強(qiang)度的(de)變化。
在(zai)(zai)噴砂(sha)后的(de)鋼板表(biao)面涂(tu)刷(shua)隔熱(re)涂(tu)層,在(zai)(zai)25℃干(gan)燥養(yang)護120 h,干(gan)膜的(de)厚度為(wei)3 mm。熱(re)源溫度為(wei)250℃,測量熱(re)源與(yu)涂(tu)層樣板表(biao)面的(de)溫差(cha)(即隔熱(re)性能),測試裝(zhuang)置如(ru)圖1所示。在(zai)(zai)3.5% NaCl溶液(50℃)中進行腐蝕浸泡實驗,測定(ding)腐蝕前(qian)后涂(tu)層的(de)溫差(cha)-時間隔熱(re)曲(qu)線。
在尺寸為(wei)(wei)150 mm×75 mm×5 mm的(de)碳鋼(gang)板表面涂刷三(san)種(zhong)隔熱涂層(ceng),完(wan)全固化后進行(xing)高低(di)溫循(xun)(xun)環(huan)冷(leng)熱試(shi)驗。將(jiang)樣板在溫度為(wei)(wei)250℃的(de)環(huan)境(jing)中放置1 h后再將(jiang)其在0℃的(de)環(huan)境(jing)中放置2 h,記為(wei)(wei)一個(ge)循(xun)(xun)環(huan)。試(shi)驗中共進行(xing)30個(ge)循(xun)(xun)環(huan),觀察(cha)涂層(ceng)在高低(di)溫循(xun)(xun)環(huan)冷(leng)熱試(shi)驗后的(de)開裂破損和(he)表面顏色的(de)變化,以評(ping)價涂層(ceng)承受循(xun)(xun)環(huan)高低(di)溫情況(kuang)下(xia)的(de)熱老化性能(neng)。
2 結果和討論
2.1 氧化石墨烯的形貌和分散狀態
圖(tu)2給出了氧化(hua)石(shi)(shi)墨(mo)烯(xi)和氧化(hua)石(shi)(shi)墨(mo)烯(xi)濃縮漿(jiang)的(de)(de)TEM形貌(mao)。可以看(kan)出,氧化(hua)石(shi)(shi)墨(mo)烯(xi)(GO)有(you)大比表(biao)面(mian)積、薄(bo)而透明的(de)(de)層狀結構以及邊緣有(you)褶皺等典型特點(dian)(圖(tu)2a)。GO在氧化(hua)石(shi)(shi)墨(mo)烯(xi)濃縮漿(jiang)中的(de)(de)分散良好,沒有(you)出現(xian)明顯的(de)(de)團聚(ju)(圖(tu)2b)。
2.2 50℃鹽水(shui)中隔熱涂層的電化學性能
圖(tu)3、圖(tu)4分(fen)別給出了不(bu)同涂(tu)層(ceng)在3.5% NaCl溶(rong)液(50℃)中浸泡24 h和432 h后的EIS圖(tu),并使用(yong)等(deng)效電(dian)(dian)路(lu)圖(tu)Rs(Qcoat(Rcoat(QdlRct)))(圖(tu)5)擬合EIS結(jie)果。其中Rs為溶(rong)液電(dian)(dian)阻(zu),Qcoat為涂(tu)層(ceng)的常相(xiang)位(wei)角(jiao)元件(CPE),Rcoat為涂(tu)層(ceng)電(dian)(dian)阻(zu),Qdl為雙電(dian)(dian)層(ceng)的常相(xiang)位(wei)角(jiao)元件,Rct為電(dian)(dian)荷轉移電(dian)(dian)阻(zu)。
由圖(tu)(tu)3b可見各涂(tu)層(ceng)(ceng)阻(zu)抗(kang)模(mo)值和相(xiang)(xiang)位角隨頻(pin)率的(de)(de)變化趨勢,其中|Z|0.01 Hz表征(zheng)涂(tu)層(ceng)(ceng)的(de)(de)耐蝕(shi)(shi)性能[13]。No.1、No.2和No.3隔熱涂(tu)層(ceng)(ceng)的(de)(de)|Z|0.01 Hz分別為6.61×105、2.37×106和1.21×106 Ω·cm2,與(yu)Nyquist圖(tu)(tu)(圖(tu)(tu)3a)中弧的(de)(de)大小排序(xu)相(xiang)(xiang)同。相(xiang)(xiang)比于(yu)No.1涂(tu)層(ceng)(ceng),No.2和No.3涂(tu)層(ceng)(ceng)相(xiang)(xiang)同的(de)(de)高頻(pin)相(xiang)(xiang)角出現在更低頻(pin)率。這(zhe)些結(jie)果表明,含(han)有氧化石(shi)墨烯的(de)(de)No.2和No.3涂(tu)層(ceng)(ceng)的(de)(de)耐蝕(shi)(shi)性優于(yu)No.1涂(tu)層(ceng)(ceng)[14]。
由圖4a可(ke)見,從No.1涂層(ceng)(ceng)到No.3涂層(ceng)(ceng)其容抗(kang)弧半徑先(xian)增(zeng)大后減(jian)小,涂層(ceng)(ceng)的(de)電(dian)(dian)阻(zu)依次(ci)為4.22×103、1.15×105、7.47×104 Ω·cm2。涂層(ceng)(ceng)的(de)電(dian)(dian)容隨著吸(xi)水率的(de)增(zeng)加(jia)而增(zeng)加(jia),反映了(le)涂層(ceng)(ceng)的(de)介電(dian)(dian)性能。因(yin)電(dian)(dian)極的(de)表面不均勻(yun),用(yong)有效電(dian)(dian)容
替代(dai)純電(dian)容。
由(you)表1可見,有(you)(you)效電(dian)容大(da)小的排序為No.1>No.3>No.2。可見No.2涂(tu)(tu)層(ceng)(ceng)的抗腐蝕介質滲透(tou)能(neng)力最(zui)強(qiang),No.1涂(tu)(tu)層(ceng)(ceng)最(zui)差。圖(tu)4b表明,浸泡432 h后No.2涂(tu)(tu)層(ceng)(ceng)的低(di)頻阻抗仍然(ran)最(zui)高(gao),No.1涂(tu)(tu)層(ceng)(ceng)的阻抗降低(di)的幅(fu)度最(zui)大(da)且高(gao)頻(105 Hz)相位角較小,約(yue)為66°,說明未經氧(yang)(yang)化石(shi)墨烯改性的No.1涂(tu)(tu)層(ceng)(ceng)屏蔽耐蝕作用(yong)的下(xia)降最(zui)為明顯[15]。1.0%氧(yang)(yang)化石(shi)墨烯在聚合物涂(tu)(tu)層(ceng)(ceng)中(zhong)含(han)量(liang)過高(gao),分散穩定性下(xia)降,使(shi)其耐蝕性能(neng)比含(han)有(you)(you)0.5%氧(yang)(yang)化石(shi)墨烯的改性涂(tu)(tu)層(ceng)(ceng)有(you)(you)所(suo)降低(di)[16,17,18]。
2.3 涂層的形(xing)貌
圖6給出了(le)三種涂(tu)(tu)層在50℃鹽水環境中浸泡432 h后的(de)宏觀形(xing)貌。可以看出,No.1涂(tu)(tu)層的(de)表面出現了(le)明顯的(de)銹點和銹跡(ji),而No.2、No.3涂(tu)(tu)層均(jun)無肉眼可見的(de)腐蝕跡(ji)象。這表明,氧(yang)化石(shi)墨(mo)烯濃縮(suo)漿改性(xing)環氧(yang)隔熱涂(tu)(tu)層具有良(liang)好的(de)耐蝕性(xing)。
圖7給出(chu)了涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)在50℃鹽水環境中浸泡432 h后的(de)表(biao)面(mian)形貌SEM照(zhao)片。由圖7a可(ke)見,在No.1涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)表(biao)面(mian)出(chu)現(xian)一些(xie)較大(da)的(de)孔(kong)洞和(he)降解,說明涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)發生(sheng)了較為嚴重的(de)腐(fu)蝕介質滲透。雖然No.2、No.3涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)的(de)表(biao)面(mian)也(ye)出(chu)現(xian)了針孔(kong),但是數量(liang)和(he)尺(chi)度明顯小于No.1涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng),是在涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)干燥成(cheng)膜過(guo)程中少量(liang)溶劑揮發所(suo)致。0.5%氧化石(shi)墨烯濃縮漿改(gai)性(xing)的(de)環氧隔熱涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)的(de)表(biao)面(mian)狀態最(zui)好(hao),因為氧化石(shi)墨烯在涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)中均(jun)勻穩(wen)定分散,提高了涂(tu)層(ceng)(ceng)(ceng)(ceng)(ceng)的(de)耐(nai)腐(fu)蝕性(xing)能(neng)。

圖8給出了(le)(le)浸(jin)泡(pao)432 h后涂(tu)層(ceng)(ceng)的(de)(de)截面(mian)SEM照片(pian)。圖8表(biao)明(ming),在No.1涂(tu)層(ceng)(ceng)與(yu)金屬基體(ti)(ti)的(de)(de)界面(mian)發生了(le)(le)明(ming)顯的(de)(de)破壞(huai),腐(fu)蝕(shi)(shi)產物(wu)(wu)層(ceng)(ceng)的(de)(de)厚度較大,表(biao)明(ming)腐(fu)蝕(shi)(shi)介質(zhi)已穿過涂(tu)層(ceng)(ceng)滲透(tou)到基體(ti)(ti)造成腐(fu)蝕(shi)(shi)。相比之(zhi)下,No.2、No.3涂(tu)層(ceng)(ceng)/基體(ti)(ti)界面(mian)處的(de)(de)腐(fu)蝕(shi)(shi)產物(wu)(wu)較少。其原因(yin)是(shi),生成的(de)(de)片(pian)狀氧化石墨烯網絡(luo)延長了(le)(le)擴散路徑(jing),阻(zu)礙了(le)(le)腐(fu)蝕(shi)(shi)介質(zhi)與(yu)基體(ti)(ti)接觸,抑制了(le)(le)腐(fu)蝕(shi)(shi)的(de)(de)發生[19]。No.2涂(tu)層(ceng)(ceng)的(de)(de)界面(mian)狀態(tai)最(zui)為(wei)完好,與(yu)對涂(tu)層(ceng)(ceng)表(biao)面(mian)形貌的(de)(de)分析結果一致(zhi)。
2.4 粘(zhan)結(jie)強度(du)
將未腐蝕(shi)和在50℃鹽水浸(jin)泡(pao)過(guo)程(cheng)中涂層(ceng)的粘(zhan)(zhan)結(jie)(jie)強(qiang)(qiang)度(du)(du)(du)進行對(dui)比(bi),結(jie)(jie)果如圖9所示。在熱(re)(re)鹽水浸(jin)泡(pao)過(guo)程(cheng)中三種隔熱(re)(re)涂層(ceng)的粘(zhan)(zhan)結(jie)(jie)強(qiang)(qiang)度(du)(du)(du)都降低(di)了,但是(shi)No.2涂層(ceng)的粘(zhan)(zhan)結(jie)(jie)強(qiang)(qiang)度(du)(du)(du)始終(zhong)比(bi)較高(大于(yu)6.5 MPa)。浸(jin)泡(pao)24 h后(hou)三種涂層(ceng)的粘(zhan)(zhan)結(jie)(jie)強(qiang)(qiang)度(du)(du)(du)降低(di)較小,No.1、No.2、No.3隔熱(re)(re)涂層(ceng)只分(fen)別降低(di)了為0.8、0.2、0.6 MPa;浸(jin)泡(pao)240 h后(hou)降低(di)較大,分(fen)別為2.8、0.9、2.1 MPa;浸(jin)泡(pao)432h后(hou)分(fen)別降低(di)3.9、1.0、2.3 MPa。0.5%氧化(hua)石(shi)墨烯濃縮(suo)漿(jiang)改性的環氧隔熱(re)(re)涂層(ceng)在浸(jin)泡(pao)過(guo)程(cheng)中粘(zhan)(zhan)結(jie)(jie)強(qiang)(qiang)度(du)(du)(du)降低(di)最少,可歸因(yin)于(yu)其優異的耐蝕(shi)性能。
2.5 腐蝕對涂層隔熱性(xing)能的(de)影響
圖10給出了(le)腐蝕試(shi)驗前涂層(ceng)的(de)(de)溫差-時間隔(ge)(ge)熱(re)(re)(re)(re)曲線,可見三種隔(ge)(ge)熱(re)(re)(re)(re)涂層(ceng)的(de)(de)隔(ge)(ge)熱(re)(re)(re)(re)降(jiang)(jiang)(jiang)溫性能(neng)相近。進行60 min隔(ge)(ge)熱(re)(re)(re)(re)試(shi)驗后(hou),三種涂層(ceng)樣板(ban)將內部250℃熱(re)(re)(re)(re)源的(de)(de)溫度(du)降(jiang)(jiang)(jiang)低83~90℃;而進行420 min的(de)(de)隔(ge)(ge)熱(re)(re)(re)(re)試(shi)驗后(hou),三種涂層(ceng)的(de)(de)隔(ge)(ge)熱(re)(re)(re)(re)降(jiang)(jiang)(jiang)溫程度(du)達到125~129℃。這(zhe)說明,在非腐蝕環境中氧化石墨烯沒有(you)提高環氧隔(ge)(ge)熱(re)(re)(re)(re)涂層(ceng)的(de)(de)降(jiang)(jiang)(jiang)溫隔(ge)(ge)熱(re)(re)(re)(re)性能(neng)。

圖11給出(chu)了50℃、3.5% NaCl溶液中浸泡432 h后(hou)三種隔(ge)(ge)(ge)熱(re)(re)(re)涂(tu)層(ceng)的溫(wen)差(cha)-時(shi)間隔(ge)(ge)(ge)熱(re)(re)(re)曲線。可以看(kan)出(chu),在250℃熱(re)(re)(re)源(yuan)放置420 h后(hou)No1、No2、No3隔(ge)(ge)(ge)熱(re)(re)(re)涂(tu)層(ceng)分(fen)別降溫(wen)98℃、123℃、115℃。這表明,含(han)有0.5%氧化(hua)石(shi)墨烯的環氧隔(ge)(ge)(ge)熱(re)(re)(re)涂(tu)層(ceng)的隔(ge)(ge)(ge)熱(re)(re)(re)性(xing)(xing)能(neng)(neng)最好,含(han)有1.0%氧化(hua)石(shi)墨烯的涂(tu)層(ceng)隔(ge)(ge)(ge)熱(re)(re)(re)性(xing)(xing)能(neng)(neng)次之,無氧化(hua)石(shi)墨烯改性(xing)(xing)的涂(tu)層(ceng)隔(ge)(ge)(ge)熱(re)(re)(re)性(xing)(xing)能(neng)(neng)最差(cha)。這些結果與EIS電化(hua)學分(fen)析、SEM形貌和粘結強度(du)等(deng)分(fen)析結果一致,表明0.5%氧化(hua)石(shi)墨烯能(neng)(neng)顯著提高環氧隔(ge)(ge)(ge)熱(re)(re)(re)涂(tu)層(ceng)在腐蝕環境中的耐蝕與隔(ge)(ge)(ge)熱(re)(re)(re)性(xing)(xing)能(neng)(neng)。
2.6 高(gao)低溫冷熱循環試驗(yan)
冷(leng)熱循(xun)環實驗前后的樣(yang)板表面變化(hua),如圖12所示(shi)。可以看(kan)出,No.1、No.2、No.3隔熱涂(tu)層樣(yang)板經過30個(ge)高(gao)低溫循(xun)環冷(leng)熱試驗后都沒有開裂破損(sun),只是(shi)顏色略有變化(hua)。這表明,涂(tu)層具有較(jiao)好的抗冷(leng)熱沖擊和熱老化(hua)性能。
3 結(jie)論(lun)
(1) 用氧(yang)化石墨(mo)烯濃縮(suo)漿改性顯著提(ti)高了環氧(yang)隔熱涂(tu)層(ceng)在50℃、3.5%NaCl溶液中(zhong)的(de)電化學阻抗。腐(fu)蝕(shi)432 h后0.5% GO改性涂(tu)層(ceng)表(biao)面沒(mei)有明(ming)顯的(de)降解,涂(tu)層(ceng)/基體界面也沒(mei)有腐(fu)蝕(shi)和裂(lie)紋。
(2) 在(zai)50℃、3.5%NaCl溶液中浸泡432 h后0.5% GO改(gai)性環(huan)氧隔熱(re)涂層的粘結強度只降低了(le)1.0 MPa,明顯優于無GO和1.0% GO改(gai)性的涂層。
(3) 對于(yu)250℃熱源,0.5% GO改(gai)性環(huan)氧隔(ge)(ge)熱涂(tu)(tu)層降溫123℃,降溫程度高于(yu)無GO及含(han)1.0% GO的隔(ge)(ge)熱涂(tu)(tu)層。在環(huan)氧隔(ge)(ge)熱涂(tu)(tu)層中添加穩(wen)定分散(san)的0.5% GO濃縮漿,可顯(xian)著提高腐蝕環(huan)境中的隔(ge)(ge)熱性能。
(4) 在30個高(gao)低溫冷熱循環試驗(yan)后(hou)環氧隔熱涂層(ceng)的(de)表面(mian)沒有明顯開裂,具有良好的(de)抗熱沖擊和(he)熱老化性(xing)能(neng)。
參考文獻(xian)
[1] Shinkareva E. V., Safonova A. M.. Conducting and heat-insulating paintwork materialsbased on nickel-plated glass spheres [J]. Glass Ceram+., 2006, 63(1): 32
[2] Ji Q, Ni Y R, Lu C H, et al. preparation and properties of hollow glass microspheres/PS insulation materials [J]. New Chem. Mater., 2012, 40(10): 32
[2] (季清(qing), 倪亞茹(ru), 陸(lu)春華等. 空心玻璃微珠/PS隔(ge)熱材料(liao)的制備及其性能 [J]. 化工新(xin)型材料(liao), 2012, 40(10): 32)
[3] Wang J W, Zhang D W. study on thermal insulating performance of sepiolote/HGMs epoxy composite coating in Mg alloy [J]. Coat. Technol. Abstr., 2017, 38(9): 12
[3] (王金(jin)偉, 張達(da)威(wei). 海泡石/空心(xin)微珠/環氧樹(shu)脂復合涂(tu)層在鎂合金(jin)表面的(de)隔熱性(xing)能研究(jiu) [J]. 涂(tu)料技術(shu)與文(wen)摘, 2017, 38(9): 12)
[4] Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
[5] Chang K C, Hsu M H, Lu H, et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel [J]. Carbon, 2014, 66: 144
[6] Singhbabu Y N, Sivakumar B, Singh J K, et al. Efficient anti-corrosive coating of cold-rolled steel in a seawater environment using an oil-based graphene oxide ink [J]. Nanoscale, 2015, 7: 8035
[7] Yu Z X, Di H H, Ma Y, et al. Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings [J]. Appl. Surf. Sci., 2015, 351: 986
[8] Singh B P, Nayak S, Nanda K K, et al. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition [J]. Carbon, 2013, 61: 47
[9] Rajabi M, Rashed G R, Zaarei D, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel [J]. Corros. Eng. Sci. Technol. 2015, 50: 509
[10] Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
[11] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[12] Ramezanzadeh B, Ahmadi A, Mandavian M. Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets [J]. Corros. Sci., 2016, 109: 182
[13] Nguyen T D, Tran B A, Vu K O, et al. Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid [J]. J. Coat. Technol. Res., 2018, 16 (2): 585
[14] Yan M C, Vetter C A, Gelling V J. Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys [J]. Corros. Sci., 2013, 70: 37
[15] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64(4): 497
[16] Tsai P Y, Chen T E, Lee Y L. Development and Characterization of Anticorrosion and Antifriction Properties for High Performance Polyurethane/Graphene Composite Coatings [J]. Coatings, 2018, 8: 250
[17] Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide [J]. Corros. Sci., 2016, 103: 283
[18] Morsch S, Lyon S, Smith S D, et al. Mapping water uptake in an epoxy-phenolic coating [J]. Prog. Org. Coat., 2015, 86: 173
[19] Cai K, Zuo S, Luo S, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. Rsc Advances2016, 6 (98): 95965
doi: 10.1039/C6RA19618G